English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 717-725 DOI: 10.7536/PC121110 前一篇   后一篇

• 综述与评论 •

改性石墨烯用作燃料电池阴极催化剂

钟轶良, 莫再勇, 杨莉君, 廖世军*   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2012-11-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 廖世军 E-mail:chsjliao@scut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21076089)资助

Application of Modified Graphene for Cathode Catalysts in Fuel Cells

Zhong Yiliang, Mo Zaiyong, Yang Lijun, Liao Shijun*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2012-11-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

石墨烯材料以其独特的超薄片层结构、超高比表面积、良好的导电性等重要特性,而被认为在制备高性能燃料电池催化剂方面具有重要的潜在应用价值。最近的一些研究工作表明,通过选择合适的制备方法和前驱体制备的改性石墨烯,对于氧还原反应具有一定的活性,可用作燃料电池阴极催化剂。目前有关石墨烯应用于燃料电池阴极催化剂的研究工作主要集中在两个方面:一是通过表面改性后直接作为燃料电池非贵金属阴极催化剂;二是将改性石墨烯作阴极催化剂载体而制备活性组分高度分散的高性能催化剂。尽管有关改性石墨烯的氧还原活性中心的结构尚不明确,然而由于这类材料在酸性及碱性环境下对氧还原的良好的催化性能,对改性石墨烯的研究已成为探索燃料电池非铂催化剂的新途径。随着这类材料的催化性能的不断提高和对表面-活性关系认识的不断深入,改性石墨烯材料在燃料电池方面将具有广阔的应用前景。

Graphene, as a novel material, is recognized as a type of potential and attractive materials for the preparation of high performance fuel cell catalysts due to its unique structure and properties, such as ultra thin layer structure, ultra high surface area, and excellent conductivity, etc. Recent investigation showed that doped or surface modified graphene can be a potential candidate for the fuel cell catalyst by choosing different preparation process and varying the precursors. In this paper, we reviewed the research works in recent years for the application of doped and modified graphene as the cathode catalysts for fuel cells, including the direct use of doped graphene as catalyst for oxygen cathodic reduction, and the use of doped or surface modified graphene as support for the preparation of high performance cathode catalyst. Although the exact active center on these doped graphene for oxygen reduction reaction is still under debate, the succeed catalysis in both alkaline and acid solution opened up a brand new approach for the development of non-precious catalysts in fuel cells. With the improvement of catalytic performance and further understanding of structure-activity relation, we prospected that the application of doped-graphene in fuel cells will be broadened. Contents
1 Introduction
2 Direct use of modified graphene as cathode catalysts for oxygen reduction
2.1 Doped graphene and their performance as cathode catalysts
2.2 Surface modified graphene catalysts
3 Modified graphene as support for the preparation of cathode catalysts
3.1 Pt-based metals/modified graphene catalysts
3.2 Non-noble metals/modified graphene catalysts
4 Conclusions and outlook

中图分类号: 

()

[1] Rao C N, Sood A K, Subrahmanyam K S, Govindaraj A. Angewandte Chemie International Edition, 2009, 48: 7752-7777
[2] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Letters, 2008, 8: 902-907
[3] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4: 1321-1326
[4] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760-764
[5] Wang H, Maiyalagan T, Wang X. ACS Catalysis, 2012, 2: 781-794
[6] Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J. Journal of Materials Chemistry, 2011, 21: 8038-8044
[7] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5: 4350-4358
[8] Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. Energy & Environmental Science, 2011, 4: 760-764
[9] Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. Nature Nanotechnology, 2012, 7: 394-400
[10] Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Journal of Materials Chemistry, 2010, 20: 743-748
[11] Zhang Y, Fugane K, Mori T, Niu L, Ye J. Journal of Materials Chemistry, 2012, 22: 6575-6580
[12] Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W X, Fu Q, Ma X, Xue Q. Chemistry of Materials, 2011, 23: 1188-1193
[13] Lin Z, Song M K, Ding Y, Liu Y, Liu M, Wong C P. Physical Chemistry Chemical Physics, 2012, 14: 3381-3387
[14] Lee K R, Lee K U, Lee J W, Ahn B T, Woo S I. Electrochemistry Communications, 2010, 12: 1052-1055
[15] Biddinger E, von Deak D, Ozkan U. Topics in Catalysis, 2009, 52: 1566-1574
[16] Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H. Journal of Materials Chemistry, 2012, 22: 390-395
[17] Wang S, Zhang L, Xia Z, Roy A, Chang D W, Baek J B, Dai L. Angewandte Chemie International Edition, 2012, 51: 4209-4212
[18] Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X A, Huang S. ACS Nano, 2011, 6: 205-211
[19] Yang S, Zhi L, Tang K, Feng X, Maier J, M黮len K. Advanced Functional Materials, 2012, 22: 3634-3640
[20] Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X, Huang S. Nanoscale, 2012, 4: 6455-6460
[21] Yao Z, Nie H, Yang Z, Zhou X, Liu Z, Huang S. Chemical Communications, 2012, 48: 1027-1029
[22] Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Angewandte Chemie International Edition, 2011, 50: 3257-3261
[23] Sun Y, Li C, Xu Y, Bai H, Yao Z, Shi G. Chemical Communications, 2010, 46: 4740-4742
[24] Yang S, Feng X, Wang X, M黮len K. Angewandte Chemie International Edition, 2011, 50: 5339-5343
[25] Ma Y, Sun L, Huang W, Zhang L, Zhao J, Fan Q, Huang W. The Journal of Physical Chemistry C, 2011, 115: 24592-24597
[26] Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Energy & Environmental Science, 2012, 5: 7936-7942
[27] Oh J, Yo E, Ono C, Kizuka T, Okada T, Nakamura J. Journal of Power Sources, 2008, 185: 886-891
[28] Haas O E, Simon J M, Kjelstrup S. Journal of Physical Chemistry C, 2009, 113: 20281-20289
[29] Seger B, Kamat P V. Journal of Physical Chemistry C, 2009, 113: 7990-7995
[30] Tan Y, Xu C, Chen G, Zheng N, Xie Q. Energy & Environmental Science, 2012, 5: 6923-6927
[31] He W, Jiang H, Zhou Y, Yang S, Xue X, Zou Z, Zhang X, Akins D L, Yang H. Carbon, 2012, 50: 265-274
[32] Shao Y Y, Zhang S, Wang C M, Nie Z M, Liu J, Wang Y, Lin Y H. Journal of Power Sources, 2010, 195: 4600-4605
[33] Nam K W, Song J, Oh K H, Choo M J, Park H A, Park J K, Choi J W. Carbon, 2012, 50: 3739-3747
[34] Li Y, Zhu E, McLouth T, Chiu C, Huang X, Huang Y. Journal of the American Chemical Society, 2012, 134: 12326-12329
[35] Jafri R I, Rajalakshmi N, Ramaprabhu S. Journal of Materials Chemistry, 2010, 20: 7114-7117
[36] Liu X, Li L, Meng C, Han Y. Journal of Physical Chemistry C, 2012, 116: 2710-2719
[37] Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443-447
[38] Proietti E, Jaouen F, Lef鑦re M, Larouche N, Tian J, Herranz J, Dodelet J P. Nature Communications, 2011, 2: 416
[39] Chen Z, Higgins D, Yu A, Zhang L, Zhang J. Energy & Environmental Science, 2011, 4: 3167-3192
[40] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nature Materials, 2011, 10: 780-786
[41] Wu Z S, Yang S, Sun Y, Parvez K, Feng X, M黮len K. Journal of the American Chemical Society, 2012, 134: 9082-9085
[42] Byon H R, Suntivich J, Shao-Horn Y. Chemistry of Materials, 2011, 23: 3421-3428
[43] Jiang R, Tran D T, McClure J, Chu D. Electrochemistry Communications, 2012, 19: 73-76

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[5] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[6] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[7] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[8] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[9] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[10] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[11] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[12] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[13] 毛庆*, 景维云, 石越. 非线性谱学分析的基本原理及其在电化学研究中的应用[J]. 化学进展, 2017, 29(2/3): 210-215.
[14] 张文锐, 张智慧, 高立国, 马廷丽. 双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用[J]. 化学进展, 2016, 28(6): 961-974.
[15] 林玲, 朱青, 徐安武. 直接甲醇燃料电池的阳极和阴极催化剂[J]. 化学进展, 2015, 27(9): 1147-1157.