English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 935-944 DOI: 10.7536/PC141215 前一篇   后一篇

• 综述与评论 •

石墨烯基氧还原催化剂在金属空气电池中的应用

苗鹤*, 薛业建, 周旭峰, 刘兆平*   

  1. 中国科学院宁波材料技术与工程研究所 动力锂离子电池工程实验室 宁波 315201
  • 收稿日期:2014-12-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 苗鹤, 刘兆平 E-mail:miaohe@nimte.ac.cn;liuzp@nimte.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21371176, 21103212)资助

Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries

Miao He*, Xue Yejian, Zhou Xufeng, Liu Zhaoping*   

  1. Advanced Li-ion Battery Engineering Lab, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2014-12-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21371176, 21103212).
随着金属空气电池技术的不断发展,氧还原催化剂成为限制其动力化的最主要瓶颈之一。近几年来,石墨烯基氧还原催化剂(GORRC)由于优异的氧还原催化活性而备受关注。本文结合石墨烯基氧还原催化剂的研究现状,将其分为三类:石墨烯作氧还原催化剂载体,氮掺杂石墨烯作为氧还原催化剂,以及氮掺杂石墨烯与其他催化剂形成的复合催化体系,并对这三种石墨烯基氧还原催化剂进行了详细的综述。石墨烯作为一种优良的催化剂载体,能够显著降低活性物质负载量,提高氧还原催化剂的催化活性和长期稳定性。氮掺杂石墨烯显示了优良的氧还原催化性能。氮掺杂石墨烯与其他催化剂复合后,由于两者之间的相互作用,可得到性能更为优异的氧还原催化剂。最后,本文还对石墨烯基氧还原催化剂及其在金属空气电池中的研究前景和发展方向进行了展望,指出了将来的研究重点。
In the past few years, the metal air batteries developed fast due to their remarkably high theoretical energy output. So far, the oxygen reduction reaction catalysts still have been the bottleneck for high power application of metal air batteries because of their sluggish kinetics. Recently, the graphene-based oxygen reduction reaction catalysts (GORRC) with high catalytic activity have been intensively reported. In this review, we focus on the recent progress and current situation of GORRC, and divide them into three categories, graphene as catalyst support, nitrogen doped graphene as the catalyst, and hybrids of nitrogen doped graphene and other catalysts as the catalyst. As an outstanding catalyst support, graphene can not only decrease the application amount of active components but also improve their catalytic activity and long-term stability. After doped by nitrogen, the graphene catalysts exhibit enhanced catalytic activity for the oxygen reduction reaction. In addition, the excellent catalysts can be obtained as the nitrogen doped graphene and other type of catalysts are hybridized. The catalytic activity and long-term stability of the hybrids are even better than that of the commercial Pt/C catalyst. Furthermore, the remarks on the challenges and perspectives of research directions are proposed for further development of GORRC which can be used in the metal air batteries.

Contents
1 Introduction
2 Graphene as catalyst support
2.1 Noble metal supported by graphene
2.2 Transition metal oxide supported by graphene
3 N-doped graphene as catalyst
4 Hybrids of N-doped graphene and other catalysts
4.1 Hybrids of N-doped graphene and noble metal
4.2 Hybrids of N-doped graphene and transition metal oxide
4.3 Hybrids of N-doped graphene and N-doped carbon nanotube
5 Conclusion and outlook

中图分类号: 

()
[1] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[2] Cheng F, Chen J. Chem. Soc. Rev., 2012, 41: 2172.
[3] Wang Z L, Xu D, Xu J J, Zhang X B. Chem. Soc. Rev., 2014,43:7746.
[4] Rahman M A, Wang X, Wen C. J. Electrochem. Soc., 2013, 160: A1759.
[5] Li Y, Dai H. Chem. Soc. Rev., 2014, 43: 5257.
[6] Kim H, Jeong G, Kim Y U, Kim J H, Park C M, Sohn H J. Chem. Soc. Rev., DOI: 10.1039/c3cs60177c.
[7] Neburchilov V, Wang H, Martin J J, Qu W. J. Power Sources, 2010, 195: 1271.
[8] Kraytsberg A, Ein-Eli Y. Nano Energy, 2013, 2: 468.
[9] Egan D R, León C P, Wood R J K, Jones R L, Stokes K R, Walsh F C. J. Power Sources, 2013, 236: 293.
[10] Pei P, Wang K, Ma Z. Applied Energy, 2014, 128: 315.
[11] 唐有根(Tang Y G). 功能材料 (J. Functional Materials), 2012, 9: 21.
[12] Goldstein J, Brown I, Koretz B. J. Power Sources, 1999, 80: 171.
[13] 陈天殷(Chen T Y). 汽车电器 (Auto Electric Parts), 2014, 12: 4.
[14] Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X, Zhu Y, Xia Y N. Science, 2009, 324: 1302.
[15] Bing Y H, Liu H S, Zhang L, Ghosh D, Zhang J J. Chem. Soc. Rev., 2010, 39: 2184.
[16] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315: 493.
[17] Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N, Markovic N M. Nat. Mater., 2007, 6: 241.
[18] Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Norskov J K. Nat. Chem., 2009, 1: 552.
[19] Wu J, Yang H, Accounts Chem. Res., 2013,46(8):1848.
[20] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Yang S H. Nat. Chem., 2011, 3: 546.
[21] Li Y G, Hasin P, Wu Y Y. Adv. Mater., 2010, 22: 1926.
[22] Goodenough J B, Manoharan R, Paranthaman M. J. Am. Chem. Soc., 1990, 112: 2076.
[23] Morozan A, Jousselme B, Palacin S. Energy Environ. Sci., 2011, 4: 1238.
[24] Esswein A J, McMurdo M J, Ross P N, Bell A T, Tilley T D. J. Phys. Chem. C, 2009, 113: 15068.
[25] Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B. Electrochem. Commun., 2006, 8: 707.
[26] Chen J, Takanabe K, Ohnishi R, Lu D L, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubotaa J, Domen K. Chem. Commun., 2010, 46: 7492.
[27] Chen Z, Higgins D, Yu A, Zhang L, Zhang J. Energy Environ. Sci., 2011, 4: 3167.
[28] Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J P, Wu G, Chung H T, Johnston C M, Zelanay P. Energy Environ. Sci., 2011, 4: 114.
[29] Bezerra C W B, Zhang L, Lee K, Liu H S, Marques A L B, Marques E P, Wang H J, Zhang J J. Electrochim. Acta, 2008, 53: 4937.
[30] Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 32: 471.
[31] McCreery R L. Chem. Rev., 2008, 108: 2646.
[32] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760.
[33] Zhang W M, Sherrell P, Minett A I, Razal J M, Chen J. Energy Environ. Sci., 2010, 3: 1286.
[34] Xie X, Pasta M, Hu L B, Yang Y, McDonough J, Cha J, Criddle C S, Cui Y. Energy Environ. Sci., 2011, 4: 1293.
[35] Yang W, Fellinger T P, Antonietti M. J. Am. Chem. Soc., 2011, 133: 206.
[36] Yoo E, Zhou H. ACS Nano, 2011, 5: 3020.
[37] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183.
[38] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4: 25.
[39] Wu J, Pisula W, Mullen K. Chem. Rev., 2007, 107: 718.
[40] 杨苏东(Yang S D), 南京航空航天大学博士学位论文(Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics), 2012.
[41] Tang S, Sun G, Qi J, Sun S, Guo J, Xin Q, Geir M H. Chin. J. Catal., 2010, 31: 12.
[42] Liu Y, Wang L, Wang G, Deng C, Wu B, Gao Y. J. Phys. Chem. C, 2010, 114: 21417.
[43] Li W Z, Liang C H, Qiu J S, Zhou W J, Han H M, Wei Z B, Sun G Q, Xin Q. Carbon, 2002, 40: 791.
[44] Guo J S, Sun G Q, Wang Q, Wang G X, Zhou Z H, Tang S H, Jiang L H, Zhou B, Xin Q. Carbon, 2006, 44: 152.
[45] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Nature, 2001, 412: 169.
[46] Chen X M, Wu G H, Chen J M, Chen X, Xie Z, Wang X. J. Am. Chem. Soc., 2011, 133: 3693.
[47] 钟轶良(Zhong Y L), 莫再勇(Mo Z Y), 杨莉君(Yang L J), 廖世军(Liao S J). 化学进展(Progress in Chemistry), 2013, 55: 717.
[48] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Chinese Sci. Bull.), 2009, 54: 2657.
[49] 李志扬(Li Z Y), 王小美(Wang X M), 倪红军(Ni H J), 葛禹锡(Ge Y X), 朱昱(Zhu Y). 现代化工(Modern Chemical Industry), 2013, 33: 46.
[50] Bikkarolla S K, Cumpson P, Joseph P, Papakonstantinou P, Faraday Discuss., 2014, 173: 415.
[51] 李云霞(Li Y X), 魏子栋(Wei Z D), 赵巧玲(Zhao Q L), 丁炜(Ding W), 张骞(Zhang Q), 陈四国(Chen S G). 物理化学学报(Acta Phys. Chim. Sin.), 2011, 27: 858.
[52] Chen H S, Liang Y T, Chen T Y, Tseng Y C, i Liu C W, Chung S R, Hsieh C T, Lee C E, Wang K W. Chem. Commun., 2014, 50: 11165.
[53] Li Y, Li Y, Zhu E, McLouth T, Chiu C Y, Huang X, Huang Y. J. Am. Chem. Soc., 2012, 134: 12326.
[54] Yang J, Tian C, Wang L, Fu H. J. Mater. Chem., 2011, 21: 3384.
[55] Lim E J, Choi S M, Seo M H, Kim Y, Lee S, Kim W B. Electrochem. Commun., 2013, 28: 100.
[56] 夏骥(Xia J), 张全生(Zhang Q S), 郭东莉(Guo D L), 李硕(Li S), 闫凡奇(Yan F Q). 无机化学学报(Chinese J. Inorg. Chem.), 2014, 30: 1305.
[57] 靳琪(Jin Q), 裴龙凯(Pei L K), 胡宇翔(Hu Y X), 杜婧(Du J), 韩晓鹏(Han X P), 程方益(Cheng F Y), 陈军(Chen J). 化学学报(Acta Chimica Sinica), 2014,72: 920.
[58] Sun M, Liu H, Liu Y, Qu J, Li J. Nanoscale, 2015, 7: 1250.
[59] Kim B S, Cho J P, Kon S, Lee J, Lee T M. KR2013010832-A, 2013.
[60] Zhang D, Wu J. CN103240080-A, 2013.
[61] 鲁振江(Lu Z J), 徐茂文(Xu M W), 包淑娟(Bao S J), 柴卉(Chai H). 化学学报(Acta Chim. Sinica), 2013, 71: 957.
[62] Lee J S, Lee T, Song H K, Cho J, Kim B S. Energy Environ. Sci., 2011, 4: 4148.
[63] Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q. Energy Environ. Sci., 2012, 5: 9765.
[64] Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, Ma Z, Li J, Chen Y, Kim Y, Chen L. J. Mater. Chem. A, 2014, 2: 7188.
[65] Guo S, Zhang S, Wu L, Sun S. Angew. Chem. Int. Ed., 2012, 51: 11770.
[66] Cui L, Lv G, Dou Z, He X. Electrochim. Acta, 2013, 106: 272.
[67] Pascone P A, Berk D, Meunier J L. Catal. Today, 2013, 211: 162.
[68] Lee D U, Kim B J, Chen Z. J. Mater. Chem. A, 2013, 1: 4754.
[69] Prabu M, Shanmugam S. International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), New York: IEEE, 2013, 468.
[70] Prabu M, Ramakrishnan P, Nara H, Momma T, Osaka T, Shanmugam S. ACS Appl. Mater. Interfaces, 2014, 6: 16545.
[71] Zhang L, Xia Z. J. Phys. Chem. C, 2011, 115: 11170.
[72] Biddinger E J, Deak D V, Ozkan U S. Top. Catal., 2009, 52: 1566.
[73] Liu R L, Wu D Q, Feng X L. Angew. Chem. Int. Ed., 2010, 49: 2565.
[74] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4: 1321.
[75] Wei D, Liu Y, Wang Y, Zhang H L, Huang L P, Yu G. Nano Letters, 2009, 9: 1752.
[76] Shao Y, Zhang S, Engelhard M H, Li G S, Shao G C, Wang Y, Liu J, Aksay I A, Lin Y H. J. Mater. Chem., 2010, 20: 7491.
[77] Wang Y, Shao Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4: 1790.
[78] Li N, Wang Z, Zhao K, Shi Z J, Gu Z N, Xu S K. Carbon, 2010, 48: 255.
[79] Panchokarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Adv. Mater., 2009, 21: 4726.
[80] 马贵香(Ma G X), 赵江红(Zhao J H), 郑剑锋(Zheng J F), 朱珍平(Zhu Z P). 新型炭材料 (New Carbon Mater.), 2012, 27: 258.
[81] Higgins D, Chen Z, Lee D U, Chen Z. J. Mater. Chem. A, 2013, 1: 2639.
[82] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5: 4350.
[83] 李静(Li J), 王贤保(Wang X B), 杨佳(Yang J), 杨旭宇(Yang X Y), 万丽(Wan L). 高等学校化学学报 (Chem. J. Chinese Universities), 2013, 34: 800.
[84] Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26: 16096.
[85] Deng H, Pan X L, Yu L, Cui Y, Jiang Y P, Qi J, Li W X, Fu Q A, Ma X C. Chem. Mater., 2011, 23: 1188.
[86] Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Linc J, Ruoff R S. Energy Environ. Sci., 2012, 5: 7936.
[87] Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. Energy Environ. Sci., 2011, 4: 760.
[88] Lin Z, Song M, Ding Y, Liu Y, Liu M, Wong C. Phys. Chem. Chem. Phys., 2012, 14: 3381.
[89] Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel E L G, Ajayan P M, Tour J M. ASC Nano, 2014, 8:10837.
[90] Cao H, Zhou X, Qin Z, Liu Z. Carbon, 2013, 56: 218.
[91] Xin Y C, Liu J G, Jie X, Liu W M, Liu F Q, Yin Y, Gu J, Zou Z G. Electrochim. Acta, 2012, 60: 354.
[92] Liu C S, Liu X C, Wang G C, Liang R P, Qiu J D. J. Electroanal. Chem., 2014, 728: 41.
[93] Dhavale V M, Gaikwad S S, Kurungot S. J. Mater. Chem. A, 2014, 2: 1383.
[94] Gracia-Espino E, Jia X, Wågberg T. J. Phys. Chem. C, 2014, 118: 2804.
[95] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater., 2011, 10: 780.
[96] Liang Y Y, Wang H L, Zhou J G, Li Y G, Wang J, Regier T, Dai H J. J. Am. Chem. Soc., 2012, 134: 3517.
[97] Li S S, Cong H P, Wang P, Yu S H. Nanoscale, 2014, 6: 7534.
[98] He Q, Li Q, Khene S, Ren X, López-Suárez F E. J. Phys. Chem. C, 2013, 117: 8697.
[99] Park H W, Lee D U, Nazar L F, Chen Z. J. Electrochem. Soc., 2013, 160: A344.
[100] Bag S, Roy K, Gopinath C S, Raj C R. ACS Appl. Mater. Interfaces, 2014, 6: 2692.
[101] Duan J, Chen S, Dai S, Qiao S Z. Adv. Funct. Mater., 2014, 24: 2072.
[102] Bikkarolla S K, Yu F, Zhou W, Joseph P, Cumpson P, Papakonstantinou P. J. Mater. Chem. A, 2014, 2: 14493.
[103] Park H W, Lee D U, Zamani P, Seo M H, Nazar L F, Chen Z. Nano Energy, 2014, 10: 192.
[104] Prabu M, Ramakrishnan P, Shanmugam S. Electrochem. Commun., 2014, 41: 59.
[105] Wu G, Mack N H, Gao W, Ma S, Zhong R, Han J, Baldwin J K, Zelenay P. ACS Nano, 2012, 6: 9764.
[106] Cho C H, Chung M W, Kwon H C, Chung J H, Woo S I. Appl. Catal. B- Environ., 2014, 144: 760.
[107] Tian G L, Zhao M Q, Yu D, Kong X Y, Huang J Q, Zhang Q, Wei F. Small, 2014, 10: 2251.
[108] Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K. Carbon, 2014, 73: 361.
[109] Higgins D C, Hoque M A, Hassan F, Choi J Y, Kim B, Chen Z. ACS Catal., 2014, 4: 2734.
[110] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[14] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[15] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.