English
新闻公告
More
化学进展 DOI: 10.7536/PC121230 前一篇   后一篇

• 综述与评论 •

掺氮石墨烯研究

陈旭, 何大平, 木士春*   

  1. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2012-12-01 修回日期:2013-03-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 木士春 E-mail:msc@whut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 50972112)和国家重点基础研究发展计划(973)项目(No.2012CB215500)资助

Nitrogen-Doped Graphene

Chen Xu, He Daping, Mu Shichun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2012-12-01 Revised:2013-03-01 Online:2013-08-25 Published:2013-06-13

本文简述了掺氮石墨烯的优异特性,并对掺氮石墨烯的合成方法、表征技术及应用进行了评述。其中,掺氮石墨烯的合成方法主要包括化学气相沉积法、氨源热解、氮等离子放电法、电弧放电、氨电热反应法、溶剂热法和含氮前驱体转换法等。掺氮石墨烯的表征技术主要包括XPS、Raman、TEM、SEM和AFM等测试分析技术。介绍了掺氮石墨烯在新能源材料领域的最新应用,特别是作为锂离子电池、锂空电池电极、超级电容器以及燃料电池氧还原催化剂等关键材料的应用。最后,对掺氮石墨烯研究过程中可能存在的一些科学问题进行了简评。

Some outstanding properties of nitrogen-doped graphene are sketched, and the latest synthesis methods, characteristic techniques and applications of nitrogen-doped graphene are reviewed. The synthesis methods of nitrogen-doped graphene mainly include chemical vapor deposition, heat treatment in ammonia atmosphere, nitrogen plasma discharge method, arc-discharge of carbon electrodes, electrothermal synthesis, solvothermal synthesis and conversion of N-containing precursors. Meantime, various characterization techniques, such as XPS, Raman, TEM, SEM and AFM, are introduced. Subsequently, the promising applications of nitrogen-doped graphene in the fields of lithium-ion batteries, lithium-air batteries and supercapacitor electrodes and oxygen reduction catalysts of fuel cells are present. Finally, some possible scientific issues involving nitrogen-doped graphene are briefly reviewed. Contents
1 Introduction
2 Types of nitrogen-doped graphene
3 Synthesis of nitrogen-doped graphene
3.1 Chemical vapor deposition method
3.2 Heat treatment in ammonia atmosphere
3.3 Nitrogen plasma discharge
3.4 Arc-discharge of carbon electrodes
3.5 Electrothermal synthesis
3.6 Solvothermal synthesis
3.7 Conversion of N-containing precursors
3.8 Other methods
4 Characterization for studying nitrogen-doped graphene
4.1 X-ray photoelectron spectroscopy
4.2 Raman spectroscopy
4.3 Other characterization techniques
5 Applications
5.1 Lithium-ion battery electrode materials
5.2 Lithium-air battery electrode materials
5.3 Catalyst of fuel cell oxygen reduction
5.4 Supercapacitor electrode materials
6 Existing problems
6.1 Limit of nitrogen atomic concentration on the carbon surface
6.2 Catalytic mechanism of oxygen reduction
7 Other issues
8 Conclusion

中图分类号: 

()
[1] Novoselov K, Geim A, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
[2] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zinmey E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282-286
[3] Dikin D A, Stankovich S, Zimney E J, Richard D, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448: 457-460
[4] Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, Mceuen P L. Science, 2007, 315: 490-493
[5] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Nat. Mater., 2007, 6: 652-655
[6] Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'Homme R K, Brinson L C. Nat. Nanotechnol., 2008, 3: 327-331
[7] Gomez-Navarro C, Burghard M, Kern K. Nano Lett., 2008, 8: 2045-2049
[8] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3: 101-105
[9] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277-2282
[10] Stoller M D, Park S J, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[11] Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A, Rao C N R. J. Chem. Sci., 2008, 120: 9-13
[12] Partoens B, Peeters F M. Phys. Rev. B, 2006, 74(7): art. no. 075404
[13] Geim A, Novoselov K. Nat. Mater., 2007, 6(3): 183-191
[14] Lee C, Wei X, Kysar J, Hone J. Science, 2008, 321(5887): 385-388
[15] Novoselov K, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 137
[16] Avouris P, Chen Z, Perebeinos V. Nat. Nanotechnol., 2007, 2(10): 605-615
[17] Zhang Y, Tan Y, Stormer H L, Kim P. Nature, 2005, 438(7065): 201-204
[18] Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H J. Science, 2009, 324: 768-771
[19] White C T, Li J, Mintmire J W. Appl. Phys. Lett., 2007, 91(11): art. no. 112108
[20] Hulicova D, Kodama M, Hatori H. Chem. Mater., 2006, 18 (9): 2318-2326
[21] Shao Y Y, Sui J H, Yin G P, Gao Y Z. Appl. Catal. B, 2008, 79(1): 89-99
[22] Wei D C, Liu Y Q, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9(5): 1752-1758
[23] Zhou C W, Kong J, Yenilmez E, Dai H J. Science, 2000, 290: 1552-1555
[24] Ewels C P, Glerup M J. Nanosci. Nanotechnol., 2005, 5: 1345-1363
[25] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009, 9: 30-35
[26] Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. J. Phys. Chem. B, 2003, 107: 3712-3718
[27] Che G, Lakshm B B, Martin C R, Fisher E R, Ruoff R S. Chem. Mater., 1998, 10: 260-267
[28] Lee D H, Lee W J, Kim S O. Nano Lett., 2009, 9(4), 1427-1432
[29] Wei D C, Liu Y Q, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9(5): 1752-1758
[30] Qu L T, Liu Y, Baek J B, Dai L M. ACS Nano, 2010, 4(3): 1321-1326
[31] Luo Z Q, Lim S H, Tian Z Q, Shang J Z, Lai L F, MacDonald B, Fu C, Shen Z X, Yu T, Lin J Y. J. Mater. Chem., 2011, 21: 8038-8044
[32] Gao H, Song L, Guo W H. Carbon, 2012, 50(12): 4476-4482
[33] Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z. Adv. Mater., 2011, 23 (8): 1020-1024
[34] Xue Y Z, Wu B, Jiang L, Guo Y L, Huang L P, Chen J Y, Tan J H, Geng D C, Luo B R, Hu W P, Yu G, Liu Y Q. J. Am. Chem. Soc., 2012, 134: 11060-11063
[35] Sheng Z H, Tao L, Chen J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5 (6): 4350-4358
[36] Dai H J, Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G. J. Am. Chem. Soc., 2009, 131(43): 15939-15944
[37] Wen Z H, Wang W C, Mao S, Bo Z, Kim H, Cui S, Li G, Feng X, Chen J. Adv. Mater., 2012, 24: 5517-5641
[38] He D P, Jiang Y L, Pan M, Mu S C. Appl. Catal. B Environ., 2013, 132/133: 379-388
[39] Guo B D, Liu Q, Chen E D. Nano Lett., 2010, 10(12): 4975-4980
[40] Wang Y, Shao Y Y, Matson D W, Li J, Lin Y. ACS Nano, 2010, 4(4): 1790-1798
[41] Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y. J. Mater. Chem., 2010, 20(35): 7491-7496
[42] Jafri R I, Rajalakshmi N, Ramaprabhu S. J. Mater. Chem., 2010, 20: 7114-7117
[43] Lin Y C, Lin C Y, Chiu P W. Appl. Phys. Lett., 2010, 96(13): art. no. 133110
[44] Suezawa M S, Sumino K J, Harada H F, Abe T. J. Appl. Phys., 1986, 25(10): 859-861
[45] Panchakarla L S, Ubrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Adv. Mater., 2009, 21: 4726-4730
[46] Li N, Wang Z Y, Zhao K K, Shi Z J, Gu Z N, Xu S K. Carbon, 2010, 48(1): 255-259
[47] Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J. Science, 2009, 324 (5928): 768-771
[48] Deng D H, Pan X L, Yu L, Cui Y, Jiang Y P, Qi J, Li W X, Fu Q, Ma X C, Xue Q K, Sun G Q, Bao X H. Chem. Mater., 2011, 23(5): 1188-1193
[49] Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324(3): 71-74
[50] Wu G, Karren L M, Christina M, Zelenay P. Science, 2011, 332: 443-447
[51] Jiang K, Jia Q M, Xu M L. J. Power Sources, 2012, 219: 249-252
[52] Liu G, Li X, Ganesan P, Popov P, Branko N. Electrochim. Acta, 2010, 55: 2853-2858
[53] Tan Y M, Xu C F, Chen G X. Adv. Funct. Mater., 2012, 21: 4401-4619
[54] Nemanja G, Igor A P, Slavko V M. J. Power Sources, 2012, 220: 306-316
[55] Liu Q, Zhang H Y, Zhong H W. Electrochim. Acta, 2012, 81: 313-320
[56] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337-6342
[57] Xin Y C, Liu J G, Xiao J. Electrochim. Acta, 2012, 60(15): 354-358
[58] Theanne S, Dennis N, Lucia P. Nano Lett., 2012, 12: 4025-4031
[59] Rao C V, Cabrera C R, Ishikawa Y. J. Phys. Chem. Lett., 2010, 1(18): 2622-2627
[60] Dubin S, Gilje S, Wang K, Hall A S, Farrar J, Varshneya R, Yang Y, Kaner R B. ACS Nano, 2010, 4(7): 3845-3852
[61] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7): 1558-1565
[62] Canado L G, Pimenta M A, Neves B R A, Dantas M S S, Jorio A. Phys. Rev. Lett., 2004, 93: art. no. 247401
[63] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys. Rep., 2005, 409(2): 47-99
[64] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C. Phys. Rev. Lett., 2006, 97: art. no. 187401
[65] Johnson C A, Patrick J W, MarkTuinstra K. Fuel, 1986, 65: 1284-1290
[66] Nemanich R J, Solin S A, Martin R M. Phys. Rev. B, 1979, 20(2): 392-401
[67] Wu P, Qian Y, Du P, Zhang H, Cai C. J. Mater. Chem., 2012, 22: 6402-6412
[68] Cancado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N, Magalhaes-Paniago R, Pimenta M A. Appl. Phys. Lett., 2006, 88: art. no. 163106
[69] Zhao L, He R, Rim K T, Schiros T, Kim K S, Zhou H, Gutiérrez C, Chockalingam S P, Arguello C J, Pálová L, Nordlund D, Hybertsen M S, Reichman D R, Heinz T F, Kim P, Pinczuk A, Flynn G W, Pasupathy A N. Science, 2011, 333: 999-1003
[70] Ferrari A C. Solid State Commun., 2007, 143(1/2): 47-57
[71] Zheng B, Hermet P, Henrard L. ACS Nano, 2010, 4(7): 4165-4173
[72] Jin Z, Yao J, Kittrell C. ACS Nano, 2011, 5(5): 4112-4117
[73] Michael A I, Venkataramanan S, Donna M D, Mamangun, Ding Y J, James F, Gregory A S. Chem. Mater., 2009, 21(14): 3332-3336
[74] Wu Z S, Ren W, Xu L, Zhou G, Yin L C, Li F, Cheng H M. ACS Nano, 2011, 5(7): 5463-5471
[75] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337-6342
[76] Wang H B, Zhang C J, Liu Z H, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G. J. Mater. Chem., 2011, 21(14): 5430-5434
[77] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1: 2193-2203
[78] McCloskey B D, Bethune D S, Shelby R M, Girishkumar G, Luntz A C. J. Phys. Chem. Lett., 2011, 2(10): 1161-1166
[79] Williford R E, Zhang J G. J. Power Sources, 2009, 194(2): 1164-1170
[80] Trana C, Yang X Q, Qu D. J. Power Sources, 2010, 195: 2057-2063
[81] Mitchell R R, Gallant B M, Thompson C V, Shao H Y. Energy Environmental Sci., 2011, 4: 2952-2958
[82] Li Y, Wang J, Li X, Geng D, Li R, Sun X. Chem. Commun., 2011, 47: 9438-9440
[83] Yoo E, Nakamura J J, Zhou H. Energy Environmental Sci., 2012, 5: 6928-6932
[84] Kichambare P, Rodrigues S, Kumar J. ACS Appl. Mater., 2012, 4 (1): 49-52
[85] Sun X L, Li Y, Wang J, Li X, Geng D, Banis M N, Li R. Electrochem. Commun., 2012, 18: 12-15
[86] Hou J, Yang M, Ellis M, Moore R, Yi B. Phys. Chem. Chem. Phys., 2012, 14: 13487-13501
[87] Cao R, Lee J S, Liu M, Cho J. Advanced Energy Mater., 2012, 2(7): 701-910
[88] Zhang L S, Liang X Q, Song W G, Wu Z Y. Phys. Chem. Chem. Phys., 2010, 12: 12055-12059
[89] Wang Y, Shao Y, Matson D W, Li J, Lin Y. ACS Nano, 2010, 4(4): 1790-1798
[90] Chen Z, Higgins D, Tao H, Hsu R S, Chen Z. J. Phys. Chem. C, 2009, 113(49): 21008-21013
[91] Hu X B, Wu Y T, Li H R, Zhang Z. J. Phys. Chem. C, 2010, 114(21): 9603-9607
[92] Shan B, Cho K. Chem. Phys. Lett., 2010, 492(1/3): 131-136
[93] Geng D S, Chen Y, Chen Y G, Li Y L, Li R Y, Sun X L, Ye S Y, Knights S. Energy Environ. Sci., 2011, 4: 760-764
[94] Liu Q, Zhang H Y, Zhang H W, Chen S. Electrochim. Acta, 2012, 81: 313-320
[95] Max W M, Patadia S N, Kammen D M. Energy Policy, 2010, 38(2): 919-931
[96] Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. J. Phys. Chem. C, 2009, 113(30): 13103-13107
[97] Wang G, Zhang J, Zhang L. Chem. Soc. Rev., 2012, 41: 797-828
[98] Wen F, Yang S Y, Chen X P. Applied Mechanics and Materials, Switzenland: Trans. Tech. Publications, 2012, 130: 3225-3228
[99] Kim T Y, Lee H W, Stoller M, Dreyer D R, Bielawski C W, Ruoff R S, Suh K. ACS Nano, 2011, 5: 436-442
[100] Dreyer D R, Stoller M D, Zhu Y, Muralli S, Vall V P, Morales C, Fuertes A, Bielawski C, Ruoff R S. Phys. Chem. Chem. Phys., 2011, 13: 2652-2655
[101] Zhang L L, Zhou R, Zhao X S. J. Mater. Chem., 2010, 20: 5983-5992
[102] Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J. J. Mater. Chem., 2012, 22: 6061-6066
[103] Wang Y, Wu Y, Huang Y, Zhang F, Yang X, Ma Y, Chen Y. J. Phys. Chem. C, 2011, 115: 23192-23197
[104] Liu C, Yu Z, Neff D, Zhamu A, Jang B Z. Nano Lett., 2010, 10: 4863-4868
[105] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6): 2472-2477
[106] Wu G, Swaidan R, Li D, Li N. Electrochim. Acta, 2008, 53: 7622-7629
[107] Dai P, Gao C. IEEE Trans. Magn., 1998, 34(4): 1738-1740
[108] Zheng B, Zheng W T, Zhang K, Wen Q B, Zhu J Q. Carbon, 2006, 44(5): 962-968
[109] Terrones M, Ajayan P M, Banhart F, Blase X, Carroll D L, Charlier J C, Czerw R, Foley B, Grobert N, Kamalakaran R. Kohler R P, Ruhle M, Seeger T, Terrones H. Appl. Phys. A, 2002, 74(3): 355-361
[110] Cameron D C. Surf. Coat. Technol., 2003, 169/170: 245-250
[111] Kundu S, Nagaiah T C, Xia W, Wang Y, Dommele S V, Bitter J H, Santa M, Schuhmann G, Muhler M. J. Phys. Chem. C, 2009, 113(32): 14302-14310
[112] Biddinger E J, Deak D V, Ozkan U S. Top. Catal., 2009, 52(11): 1566-1574
[113] Nagaiah T C, Kundu S, Bron M, Muhler M, Schuhmann W. Electrochem. Commun., 2010, 12(3): 338-341
[114] Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S. J. Power Sources, 2009, 187(1): 93-97
[115] Lee K H, Sinnott S B. Nano Lett., 2005, 5(4): 793-798
[116] Mowbray D, Morgan C, Thygesen K. Phys. Rev. B, 2009, 79(19): art. no. 195431
[117] Sorescu D C, Jordan K D, Avouris P. J. Phys. Chem., 2001, 105(45): 11227-11232
[118] Ulbricht H, Moos G, Hertel T. Phys. Rev. B, 2002, 66(7): art . no. 075404
[119] Shan B, Cho K. Chem. Phys. Lett., 2010, 492(1/3): 131-136
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[6] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[7] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[8] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[12] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[15] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
阅读次数
全文


摘要

掺氮石墨烯研究