English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1846-1868 DOI: 10.7536/PC200683 前一篇   

• 综述 •

苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块

罗世鹏1,3, 黄培强2,3,**()   

  1. 1. 江苏理工学院 化学与环境工程学院 常州 213001
    2. 能源材料化学协同创新中心 厦门大学化学化工学院化学系 厦门 361005
    3. 福建省化学生物学重点实验室 厦门 361005
  • 收稿日期:2020-06-28 修回日期:2020-08-11 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 黄培强
  • 作者简介:

    黄培强

    厦门大学化学系教授。1987年获法国南巴黎大学博士学位。代表性著作:《Efficiency in Natural Product Total Synthesis》(黄乃正院士作序,主编:黄培强, 姚祝军, Richard P. Hsung , Wiley, 2018),《有机合成》(高等教育出版社,2004);《有机人名反应、试剂与规则》(化学工业出版社,第一版,2008;第二版,2019)。

    ** Corresponding author e-mail:
  • 基金资助:
    国家重点研发计划(2017YFA0207302); 国家自然科学基金项目(21672176, 21931010); 教育部长江学者和创新团队发展计划资助()

Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies

Luo Shipeng1,3, Huang Peiqiang2,3,**()   

  1. 1. School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
    2. iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
    3. Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen 361005, China
  • Received:2020-06-28 Revised:2020-08-11 Online:2020-11-24 Published:2020-09-01
  • Contact: Huang Peiqiang
  • Supported by:
    This work was supported by the National Key R&D Program of China(2017YFA0207302); the National Natural Science Foundation of China(21672176, 21931010); the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT) of the Ministry of Education, China.()

合成砌块策略是天然产物生源合成的基本策略之一。对映纯天然手性合成砌块,由于价廉、易得,在天然产物的对映选择性全合成中获得广泛应用。这一策略,兴起于四十年前,至今仍是复杂分子对映选择性全合成的重要工具。L-苹果酸是一种价廉易得的天然手性源,D-苹果酸虽然价格稍贵,也是一种商品化试剂。苹果酸所包含的四个碳原子均可被转化或官能化,因而被广泛应用于各类天然产物的对映选择性全合成。本文综述了L-和D-苹果酸在有机合成中的应用进展:归纳总结了从苹果酸衍生的多种C4手性合成砌块,重点评述了近年来这些合成砌块在复杂天然产物全合成中的应用,结合作者实验室的工作介绍基于苹果酸的新型合成方法学研究进展,并对基于苹果酸的合成方法学的发展进行了展望。

Building block-approach is one of the basic strategies used by nature in biogenetic synthesis. Naturally occurring L-α-amino acids, L-α-hydroxy acids, D-mono-sugars, and terpenes, being cheap and easily available in enantiopure forms, have found widespread applications enantioselective synthesis as chiral building blocks. L-Malic acid, an L-α-hydroxy diacid, is a readily available and cheap natural chiron, D-malic acid is also commercially available although it is more expensive. With all of the four carbon atoms transformable or functionalizable, malic acid serves as a versatile C4 building block in organic synthesis for enantioselective synthesis. In this review, the progress in the applications of malic acid in organic synthesis is summarized. Firstly, the transformations of malic acid into a variety of advanced chiral C4 building blocks are compiled. Secondly, selected examples on the applications of these versatile intermediates in the total synthesis of complex natural products in recent years are presented. Besides, the developments of malic acid-based new synthetic methodologies including the contribution from one of the authors’ laboratory are highlighted. An outlook for future development of malic acid-based synthetic strategy is provided.

Contents

1 Introduction

2 Classical transformations of L-malic acid

3 Application of L-malic acid in the enantioselective total syntheses of natural products

3.1 Total Syntheses based on 1b-related building blocks

3.2 Total Syntheses based on 1i-related building blocks

3.3 Total Syntheses based on 1m-related building blocks

3.4 Total Syntheses based on 1r-related building blocks

4 New synthetic methodologies based on malic acid

5 Malimide-based asymmetric synthetic methodologies

6 Conclusion and outlook

()
图1 全合成应用中几种常见天然有机小分子的结构式
Fig.1 The structures of three natural organic small molecule used in the total synthesis of natural products.
图式1 基于L-苹果酸的重要合成砌块及其转化条件概览
Scheme 1 Overview of important building blocks from L-malic acid and their conversions. TIPBSI=Triisopropyl benzylsulfonyl imid.=imidazole
图式2 Lomaiviticins A, B的逆合成分析
Scheme 2 Shair’s retrosynthetic analysis of lomaiviticins A, B
图式3 Lomaiviticins C4-epi-核心结构的合成
Scheme 3 Shair’s synthesis of C4-epi-lomaiviticins’ core HOTT=S-(1-oxido-2-pyridinyl) 1,1,3,3-tetramethylthiouronium hexafluorophosphate
图式4 Gulmirecin B 中C1~C12片段22的合成
Scheme 4 Maier’s synthesis of C1~C12 fragment of gulmirecin B
图式5 (+)-Brasilenyne的合成路线
Scheme 5 Denmark’s total synthesis of(+)-brasilenyne
图式6 (-)-Bitungolide F的合成路线
Scheme 6 She’s total sythesis of(-)-bitungolide F
图式7 (-)-Achaetolide的全合成路线
Scheme 7 Yadav’s total synthesis of(-)-achaetolide
图式8 (-)-Marinisporolide C的逆合成分析
Scheme 8 Retrosynthetic analysis of(-)-marinisporolide C
图式9 (-)-Mmarinisporolide C的全合成路线
Scheme 9 Dias’s total synthesis of(-)-marinisporolide C
图式10 Alotaketals A~D及(-)-phorbaketal A的集约化合成策略
Scheme 10 Unified strategy for the syntheses of alotaketals A~D and(-)-phorbaketal A
图式11 (-)-Alotaketal A和(-)-phorbaketal A的合成路线
Scheme 11 Tong’s total syntheses of (-)-alotaketal A and(-)-phorbaketal A
图式12 Fostriencin的形式全合成路线
Scheme 12 Yin’s formal synthesis of fostriencin(CI-920)
图式13 Bryostatin 8关键片段88的合成路线
Scheme 13 Song’s synthesis of fragment 88 for bryostatin 8
图式14 Bryostatin 8的合成路线
Scheme 14 Song’s total synthesis of bryostatin 8
图式15 Mandelalide A的逆合成分析
Scheme 15 Retrosynthetic analysis of mandelalide A
图式16 Mandelalide A的合成路线
Scheme 16 Carter’s total synthesis of mandelalide A
图式17 Ht-13-A的全合成路线
Scheme 17 Jia’s total synthesis of ht-13-A
图式18 Spirastrellolide A甲酯的逆合成分析
Scheme 18 Paterson’s retrosynthetic analysis of spirastrellolide A methyl ester
图式19 Spirastrellolide A甲酯中C43-C37片段的合成
Scheme 19 Synthesis of C43-C37 segment
图式20 Spirastrellolide A甲酯中C17-C25片段的合成
Scheme 20 Synthesis of C17-C25 segment
图式21 Spirastrellolide A甲酯中C1-C11片段的合成
Scheme 21 Synthesis of C1-C11 fragment
图式22 Spirastrellolide A甲酯的全合成路线
Scheme 22 Paterson’s total synthesis of spirastrellolide A methyl ester
图式23 特窗酸及α-酰基特窗酸的合成新方法
Scheme 23 Igglessi-Markopoulou’s and Schobert’s methods for the synthesis of α-acyl tetronic acids
图式24 (-)-Dysibetaine的全合成路线
Scheme 24 Kobayashi’s total synthesis of (-)-dysibetaine
图式25 (-)-Lundurine A的全合成路线
Scheme 25 Qin’s total synthesis of(-)-lundurine A
图式26 Grandisine D的合成路线
Scheme 26 Tamura’s total synthesis of grandisine D
图式27 基于苹果酸的新型手性1,3二醇合成法
Scheme 27 Huang’s chemo- and regioselective tandem reaction for the direct conversion of O-tosyl malate malate to chiral 1,3-diols
图式28 新型手性1,3二醇合成法的反应机理
Scheme 28 Mechanism for Huang’s tandem reaction of O-tosyl malate
图式29 松叶蜂性信息素的逆合成分析
Scheme 29 Huang’s retrosynthetic analysis of sex pheromones of pine sawflies
图式30 6-epi-Prelactong-V的全合成路线
Scheme 30 Chandrasekhar’s total synthesis of 6-epi-prelactong-V
图式31 苹果酰胺合成砌块的合成与区域、立体选择性还原烷基化
Scheme 31 Huang’s synthesis and regio- and stereoselective reductive alkylations of malimide building blocks
图式32 (+)-Preussin B的首次合成
Scheme 32 The first total synthesis of(+)-preussin B by Huang
图式33 C-4位取代的O-苄基苹果酰亚胺衍生物的合成
Scheme 33 The syntheses of C-4 substitute-O-benzyl malimide derivatives
图式34 Amphiasterin B4的全合成路线
Scheme 34 Yoda’s total synthesis of amphiasterin B4
图式35 天然产物oxyprotostemonine和1-hydroxyproto- stemonine的结构
Scheme 35 Structures of alkaloids oxyprotostemonine and 1-hydroxyprotostemonine
图式36 1-hydroxyprotostemonine中间体的合成尝试
Scheme 36 Attempted synthesis of an intermediate for 1-hydroxyprotostemonine
图式37 Pyne小组对1-hydroxyprotostemonine核心结构的模型研究
Scheme 37 Pyne’s synthesis of a model compound for 1-hydroxyprotostemonine
图式38 药明康德公司基于黄手性合成砌块方法学合成抗肝癌活性吡咯烷化合物
Scheme 38 WuXi AppTec’s synthesis of anti-cancer pyrrolidines based on Huang’s building block
图式39 默克公司基于黄手性合成砌块方法学合成LRRK2激酶抑制剂229
Scheme 39 Merck’s synthesis of LRRK2 kinase inhibitor 229 based on Huang’s building block
[1]
Newman D, J, Cragg G M. J. Nat. Prod., 2020, 83: 770.
[2]
Nicolaou K, C, Vourloumis, D, Winssinge, N, Baran P S. Angew. Chem. Int. Ed., 2000, 39: 44.
[3]
Huang, P Q.“Principles for Synthetic Efficiency and Expansion of the Field” in Efficiency in Natural Product Total Synthesis. Eds: Huang P Q, Yao Z J, Hsung R P.(Forwarded by Wong H N C), 1st ed, John Wiley & Sons: Hoboken N J., 2018, Chapter 1, 27.
[4]
(a) Poupon E, Nay B. Wiley-VCH, Weinheim, 2011, 2: 956.;(b) 黄婷婷(Huang T), 周子画(Zhou Z), 刘琦(Liu Q), 王晓政(Wang X), 郭文丽(Guo W), 林双君(Lin S). 化学进展(Progress in Chemistry), 2018, 30(5): 692.
[5]
Dewick, P M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. John Wiley and Sons: Chichester, 2009.
[6]
(a) Hanessian S. Acc. Chem. Res., 1979, 12: 159.;(b) Hanessian S. Total Synthesis of Natural Products: The “Chiron Approach”. Pergamon: Oxford, 1983.
[7]
李武(Li W), 汪俊洁(Wang J), 马大为(Ma D). 化学进展(Progress in Chemistry), 2019, 31(11): 1460.;(b) Brill Z G, Condakes M L, Ting C P, Maimone T J. Chem. Rev., 2017, 117: 11753.;(c) Bhat C, Tilve S G. RSC Adv., 2014, 4: 5405.;(d) Haleema S, Sasi P V, Ibnusaud I, Polavarapu P L, Kagan H B. RSC Adv., 2012, 2: 9257.;(e) 黄培强(Huang P Q). 有机化学(Chinese Journal of Organic Chemistry), 1999, 19: 364.
[8]
本课题组此前的总结见:(a) Huang P Q. “Recent Advances on the Asymmetric Synthesis of Bioactive 2-Pyrrolidinone-Related Compounds Starting From Enantiomeric Malic Acid”, In New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles; Eds: Vicario J L, Badia D, Carrillo L. Research Signpost: Kerala, 2005, 197.;(b) Huang P Q. Synlett, 2006, 1133.;(c) Wang A E, Huang P Q. Pure Appl. Chem., 2014, 86: 1227.
[9]
For other reviews on the use of both enantiomers of malic acid as, chirons, see:(a) Coppola G M, Schuster H F. α-Hydroxy Acids in Enantioselective Synthesis; Wiley-VCH: Weinheim, 1997; Chapter 3, pp. 167-312.;(b) Gawronski J, Gawronska K. Tartaric and Malic Acids in Synthesis: A Source Book of Building Blocks, Ligands, Auxiliaries, and Resolving Agents; Wiley: New York, 1999.
[10]
(a) Seebach D, Wasmuth D. Helv. Chim. Acta, 1980, 63: 197.;(b) 林国强(Lin G Q), 孙兴文(Sun X W), 陈耀全(Chen Y Q), 李月明(Li Y M), 陈新滋(Chen X Z), 陈凯先(Chen K X). 手性合成——不对称反应及其应用(Chiral Synthesis: Asymmetric Reaction and Its Application). 北京:科学出版社(Beijing: Science Press), 2013.
[11]
Hanessian, S, Ugolini, A, Dubé, D, Glamya A. Can. J. Chem., 1984, 2146.
[12]
(a) Guindon Y, Yoakim C, Bernstein M A, Morton H E. Tetrahedron Lett., 1985, 26: 1185.;(b) Yadav J S, Gopala Rao Y, Ravindar K, Subba R B V, Narsaiah A V. Synthesis, 2009, 3157.
[13]
Glebocka, A, Sicinski R, R, Plum L, A, DeLuca H L. J. Steroid Biochem. Mol. Biol., 2013, 136: 39.
[14]
Hara, Y, Honda, T, Arakawa, K, Ota, K, Kamaike, K, Miyaoka H. J. Org. Chem., 2018, 83: 1976.
[15]
(a) Hashimoto M, Yanagiya M, Okuno T, Shirahama H. Bull. Chem. Soc. Jpn., 1989, 62: 2751.;(b) Dutton F E, Lee B H. Tetrahedron Lett., 1998, 39: 5313.;(c) Dutton F E, Lee B H, Johnson S S, Coscarelli E M, Lee P H. J. Med. Chem., 2003, 46: 2057.
[16]
Benson, S, Collin M, P, Arlt, A, Gabor, B, Goddard, R, Furstner A. Angew. Chem. Int. Ed., 2011, 50: 8739.
[17]
(a) Trybulski E J, Kramss R H, Mangano R M, Brabander H J, Francisco G. Bioorg. Med. Chem. Lett., 1992, 2: 827.;(b) White J D, Hrnciar P. J. Org. Chem., 2000, 65: 9129.
[18]
(a) Seiki S, Takashi H, Masami I, Ryosuke N, Toshikazu F, Seiya N, Toshio M. Chem. Lett., 1984, 1389.;(b) Saito S, Ishikawa T, Kuroda A, Koga K, Moriwake T. Tetrahedron, 1992, 48: 4067.
[19]
Ley S, V, Gaunt M, J, Jessiman A, S, Orsini, P, Tanner H, R, Hook D F. Org. Lett., 2003, 5: 4819.
[20]
(a) Yakura T, Ueki A, Kitamura T, Tanaka K, Nameki M, Ikeda M. Tetrahedron, 1999, 55: 7461.;(b) Zhou Q R, Wei X Y, Li Y Q, Huang D, Wei B G. Tetrahedron, 2014, 70: 4799.
[21]
Ghosh, S, Kumar S, U, Shashidhar J. J. Org. Chem., 2008, 73: 1582.
[22]
(a) Curran D, Zhang K. Synlett, 2010, 667.;(b) Sudina P R, Motati D R, Seema A. J. Nat. Prod., 2019, 81: 1399.
[23]
(a) Hayashi Y, Yamaguchi J, Shoji M. Tetrahedron, 2002, 58: 9839.;(b) Ogawa N, Tojo T, Kobayashi Y. Tetrahedron Lett., 2014, 55: 2738.;(c) Hattori H, Mitsunaga T, Clive D L J. Tetrahedron Lett., 2019, 60: 1989.
[24]
Mitsunobu O., Synthesis, 1981, 1.
[25]
Rengarasu, R, Maier M E. Synlett, 2019, 30: 1346.
[26]
Scott, E, Denmark S, E, Yang S M. J. Am. Chem. Soc., 2004, 126: 12432.
[27]
Su, Y, Xu Y, Han J, Zheng J, Qi J, Jiang T, Pan X, She X. J. Org. Chem. 2009, 74: 2743.
[28]
Sabitha, G, Srinivas, R, Yadav J S. Synthesis, 2011, 3343.
[29]
(a) Dias L C, de Lucca E C. Org. Lett., 2015, 17: 6278.;(b) Dias L C, de Lucca E C. J. Org. Chem., 2017, 82: 3019.
[30]
Cheng, H, Zhang, Z, Yao, H, Zhang, W, Yu, J, Tong R. Angew. Chem. Int. Ed., 2017, 56: 9096.
[31]
Zhang H, J, Yin L. J. Am. Chem. Soc., 2018, 140: 12270.
[32]
Zhang Y, B, Guo Q, Y, Sun X, W, Lu, J, Cao Y, J, Pu, Q, Chu Z, W, Gao, L, Song Z L. Angew. Chem. Int. Ed., 2018, 57: 942.
[33]
Veerasamy, N, Ghosh, A, Li, J, Watanabe, K, Serrill J, D, Ishmael J, E, McPhail K, L, Carter R G. J. Am. Chem. Soc., 2016, 138: 770.
[34]
Tao, P, Zhuang C, Z, Jia Y. Chem. Commun., 2016, 52: 11300.
[35]
Shair M, D, Lee A S. Org. Lett., 2013, 15: 2390.
[36]
Ando, K, Oishi, T, Hirama, M, Ohno, H, Ibuka T. J. Org. Chem., 2000, 65: 4745.
[37]
Zhu, J, Klunder A J, H, Zwanenburg B. Tetrahedron, 1995, 51: 5099.
[38]
Surup, F, Viehrig, K, Mohr K, I, Herrmann, J, Jansen, R, Müller R. Angew. Chem. Int. Ed., 2014, 53: 13588.
[39]
(a) Corey E J, Fuchs P L. Tetrahedron Lett., 1972, 36: 3769.;(b) Smith A B III, Chen S S Y, Nelson F C, Reichert J M, Salvatore B A. J. Am. Chem. Soc., 1997, 119: 10935.
[40]
(a) Wipf P, Jahn H. Tetrahedron, 1996, 52: 12853.;(b) Huang Z, Negishi E I. Org. Lett., 2006, 8: 3675.;(c) Zhao Y, Snieckus V. Org. Lett., 2014, 16: 390.
[41]
Kinnel R, B, Dieter R, K, Meinwald, J, Engen D, V, Clardy, J, Eisner, T, Stallard M, O, Fenical W. Proc. Natl. Acad. Sci. U. S. A., 1979, 76: 3576.
[42]
Johnson W, S, Elliott, R, Elliott J D. J. Am. Chem. Soc., 1983, 105: 2904.
[43]
Nicolaou K, C, Marron B, E, Veale C, A, Webber S, E, Serhan C N. J. Org. Chem., 1989, 54: 5527.
[44]
(a) Brown H C, Bhat K S, Randad R S. J. Org. Chem., 1989, 54: 1570.;(b) Racherla U S, Brown H C. J. Org. Chem., 1991, 56: 401.
[45]
(a) Fox H H, Yap K B, Robbins J, Cai S, Schrock R R. Inorg. Chem., 1992, 31: 2287.;(b) Schrock R R, Murdzek J S, Bazan G C, Robbins J, DiMare M, O’Regan M. J. Am. Chem. Soc., 1990, 112: 3875.
[46]
Beck, G, Jendralla, H, Kesseler K. Synthesis, 1995, 1014.
[47]
(a) Myers A G, Yang B, Chen H, Mckinstry L, Kopecky D J, Gleason J L. J. Am. Chem. Soc., 1997, 119: 6496.;(b) Myers A G, Yang B H, Chen H, Kopecky D J. Synlett, 1997, 457.
[48]
(a) Crimmins M T, King B W, Tabet E A. J. Am. Chem. Soc., 1997, 119: 7883.;(b) Crimmins M T, King B W, Tabet E A, Chaudhary K. J. Org. Chem., 2001, 66: 894.
[49]
(a) Evans D A, Bartroli J, Shih T L. J. Am. Chem. Soc., 1981, 103: 2127.;(b) Evans D A, Nelson J V, Vogel E, Taber T R. J. Am. Chem. Soc., 1981, 103: 3099.
[50]
Drä, ger G, Kirschning, A, Thiericke, R, Zerlin M. Nat. Prod. Rep., 1996, 13: 365.
[51]
(a) Alvarez-Ibarra C, Arias S, Gabriel B M, Fernández M J, Rodríguez M, Sinisterra V. J. Chem. Soc. Chem. Commun., 1987, 1509.;(b) Paterson I, Yeung K S, Smail J B. Synlett, 1993, 774.
[52]
Inanaga, J, Hirata, K, Saeki, H, Katsuki, T, Yamaguchi M. Bull. Chem. Soc. Jpn., 1979, 52: 1989.
[53]
Kwon H, C, Kauffman C, A, Jensen P, R, Fenical W. J. Org. Chem., 2009, 74: 675.
[54]
Blakemore P, R, Cole W, J, Kocieski P, J, Morley A. Synlett, 1998, 26.
[55]
Parikh J, Pm, Doering W E. J. Am. Chem. Soc. 1967, 89: 5505.
[56]
Chow K Y, K, Bode J W. J. Am. Chem. Soc., 2004, 126: 8126.
[57]
Zhang, W, Yao, H, Yu, J, Zhang, Z, Tong R. Angew. Chem. Int. Ed., 2017, 56: 4787.
[58]
(a) Li D, Zhao Y, Ye L, Chen C, Zhang J. Synthesis, 2010, 3325.;(b) Chavez D E, Jacobsen E N. Angew. Chem. Int. Ed., 2001, 40, 3667.;(c) Esumi T, Okamoto N, Hatakeyama S. Chem. Commun., 2002, 3042.;(d) Miyashita K, Ikejiri M, Kawasaki H, Maemura S, Imanishi T. J. Am. Chem. Soc., 2003, 125, 8238.;(e) Robles O, McDonald F E. Org. Lett., 2009, 11, 5498.
[59]
Schwartz G, K, Shah M A. J. Clin. Oncol., 2005, 23: 9408.
[60]
Wullschleger C, W, Gertsch, J, Altmann K. Org. Lett., 2010, 12: 1120.
[61]
Tamao, K, Sumitani, K, Kumada M. J. Am. Chem. Soc., 1972, 94: 4374.
[62]
Gao, L, Lu, J, Lin X, L, Xu Y, J, Yin Z, P, Song Z L. Chem. Commun., 2013, 49: 8961.
[63]
Okazoe, T, Takai, K, Utimoto K. J. Am. Chem. Soc., 1987, 109: 951.
[64]
Lu, J, Song Z, L, Zhang Y, B, Gan Z, B, Li H Z. Angew. Chem. Int. Ed., 2012, 51: 5367.
[65]
Sikorska, J, Hau A, M, Anklin, C, Parker-Nance, S, Davies-Coleman M, T, Ishmael J, E, McPhail K L. J. Org. Chem., 2012, 77: 6066.
[66]
Willwacher, J, Fürstner A. Angew. Chem. Int. Ed., 2014, 53: 4217.
[67]
(a) Mahapatra S, Carter R G. Angew. Chem., Int. Ed., 2012, 51: 7948.;(b) Mahapatra S, Carter R G. J. Am. Chem. Soc., 2013, 135: 10792.
[68]
Taguchi, T, Kitagawa, O, Morikawa, T, Nishiwaki, T, Uehara, H, Endo, H, Kobayashi Y. Tetrahedron Lett., 1986, 27: 6103.
[69]
Petasis N, A, Bzowej E I. J. Am. Chem. Soc., 1990, 112: 6392.
[70]
Kamigauchi, T, Yasui M. PCT Int. Appl., WO 2000059909, 2000.
[71]
Tao, P, Jia Y. Chem. Commun., 2014, 50: 7367.
[72]
Williams D, E, Roberge, M, Soest R, V, Andersen R J. J. Am. Chem. Soc., 2003, 125: 5296.
[73]
(a) Paterson I, Maltas P, Dalby S M, Lim J H, Anderson E A. Angew. Chem. Int. Ed., 2012, 51: 2749.;(b) Paterson I, Anderson E A, Dalby S M, Lim J H, Maltas P. Org. Biomol. Chem., 2012, 10: 5861.;(c) Paterson I, Anderson E A, Dalby S M, Lim J H, Maltas P. Org. Biomol. Chem. 2012, 10: 5873.
[74]
Uenishi, J, Kawahama, R, Yonemitsu, O, Tsuji J. J. Org. Chem., 1996, 61: 5716.
[75]
Scott W, J, Stille J K. J. Am. Chem. Soc., 1986, 108: 3033.
[76]
Nakata, T, Tanaka, T, Oishi T. Tetrahedron Lett., 1983, 24: 2653.
[77]
Hosomi, A, Sakurai H. Tetrahedron Lett., 1976, 17: 1295.
[78]
Mitsos C, A, Zografos A, L, Igglessi-Markopoulou O. J. Org. Chem., 2000, 65: 5852.
[79]
Schobert, R, Jagusch C. Synthesis, 2005, 2421.
[80]
Nomura, K, Hori, K, Arai, M, Yoshii E. Chem. Pharm. Bull., 1986, 34: 5188.
[81]
Isaacson, J, Kobayashi Y. Angew. Chem. Int. Ed., 2009, 48: 1845.
[82]
Song Q, Y, Yang B, L, Tian S K. J. Org. Chem., 2007, 72: 5407.
[83]
Zheng, X, Feng C, G, Ye J, L, Huang P Q. Org. Lett., 2005, 7: 553.
[84]
Jin, S, Gong, J, Qin Y. Angew. Chem. Int. Ed., 2015, 54: 2228.
[85]
Simmons H, E, Smith R D. J. Am. Chem. Soc., 1958, 80: 5323.
[86]
Carroll A, R, Arumugan, G, Quinn R, J, Redburn, J, Guymer, G, Grimshaw P. J. Org. Chem., 2005, 70: 1889.
[87]
Kurasaki, H, Okamoto, I, Morita, N, Tamura O. Chem. Eur. J., 2009, 15: 12754.
[88]
Myers E, L, de Vries J, G, Aggarwal V K. Angew. Chem., 2007, 119: 1925.
[89]
Huang P, Q, Lan H, Q, Zheng, X, Ruan Y P. J. Org. Chem., 2004, 69: 3964.
[90]
Zheng J, F, Lan H, Q, Yang R, F, Peng Q, L, Xiao Z, H, Tuo S, C, Hu K, Z, Xiang Y, G, Wei, Z, Zhang, Z, Huang P Q. Helv. Chim. Acta, 2012, 95: 1799.
[91]
Chandrasekhar, S, Rambabu, C, Prakash S J. Tetrahedron Lett., 2006, 47: 1213.
[92]
(a) Huang P Q, Fei X S, Zheng H. Chin. Chem. Lett., 1995, 6: 739.;(b) Huang P Q, Wang S L, Zheng H, Fei X S. Tetrahedron Lett., 1997, 38: 271.;(c) Huang P Q, Wang S L, Ye J L, Ruan Y P, Huang Y Q, Zheng H, Gao J X. Tetrahedron, 1998, 54: 12547.
[93]
Ye J, L, Huang P, Q, Lu X. J. Org. Chem., 2007, 72: 35.
[94]
Wang Y, H, Ou, W, Xie, L, Ye J, L, Huang P Q. Asian J. Org. Chem., 2012, 1: 359.
[95]
Sengoku, T, Suzuki, T, Kakimoto, T, Takahashi, M, Yoda, H, Tetrahedron, 2009, 65: 2415.
[96]
Takahashi, M, Suzuki, T, Wierzejska, J, Sengoku, T, Yoda H. Tetrahedron Lett., 2010, 51: 6767.
[97]
Baird M, C, Pyne S, G, Ung A, T, Lie, W, Sastraruji, T, Jatisatienr, A, Jatisatienr, C, Dheeranupattana, S, Lowlam, J, Boonchalermkit, S, Heterocycles, 2012, 84: 473.
[98]
Huang P, Q, Geng, H, Tian Y, S, Peng Q, R, Xiao K J. Sci. China Chem., 2015, 58: 478.
[99]
(a) Xiao K J, Luo J M, Ye K Y, Wang Y, Huang P Q. Angew. Chem. Int. Ed., 2010, 49: 3037.;(b) Xiao K J, Wang Y, Ye K Y, Huang P Q. Chem. Eur. J., 2010, 16: 12792.
[100]
Xu C, P, Xiao Z, H, Zhuo B, Q, Wang Y, H, Huang P Q. Chem. Commun., 2010, 46: 7834.
[101]
(a) Chen Y. Chem. Eur. J., 2019, 25: 3405.;(b) He Z T, Hartwig J F. Nature Commun., 2019, 10: 4083.
[102]
Meng W, H, Wu T, J, Zhang H, K, Huang P, Q, Tetrahedron: Asymmetry, 2004, 15: 3899.
[103]
黄实验室近期由苹果酸方法学研究激发的代表性N-α-位C—C键形成新方法:(a) Xu Z, Wang X G, Wei Y H, Ji K L, Zheng J F, Ye J L, Huang P Q. Org. Lett. 2019, 21: 7587.;(b) Chen H, Huang Y H, Ye J L, Huang P Q. J. Org. Chem., 2019, 84: 9270.;(c) Liu Y P, Zhu C J, Yu C C, Wang A E, Huang P Q. Eur. J. Org. Chem., 2019, 7169.;(d) 刘玉成(Liu Y C),郑啸(Zheng X), 黄培强(Huang P Q). 化学学报(Acta Chimica Sinica), 2019, 77(9): 850.;(e) Xiao K J, Wang Y, Ye K Y, Huang P Q. Chem. Eur. J., 2010, 16: 12792.;(f) Geng H, Huang P Q. Chin. J. Chem., 2019, 37: 811.;(g) Wu D P, He Q, Chen D H, Ye J L, Huang P Q. Chin. J. Chem., 2019, 37: 315.;(h) Ou W, Han F, Hu X N, Chen H, Huang P Q. Angew. Chem. Int. Ed., 2018, 57: 11354.;(i) Fan T, Wang A, Li J Q, Ye J L, Zheng X, Huang P Q. Angew. Chem. Int. Ed., 2018, 57: 10352.;(j) 叶剑良(Ye J L), 黄培强 (Huang P Q). 有机化学(Chinese Journal of Organic Chemistry), 2018, (9): 2215.;(k) Ye J L, Zhu Y N, Geng H, Huang P Q. Sci. China -Chem., 2018, 61: 687.;(l) 郑啸(Zheng X), 黄培强(Huang P Q), 化学进展(Progress in Chemistry), 2018, 30: 528.
[104]
王静(Wang J), 范建华(Fan J H), 雷灿(Lei C), 万永祥(Wan Y X), 梅子厚(Mei Z H), 吴向阳(Wu X Y), 肖志勇(Xiao Z Y), 肖贻崧(Xiao Y S), 贺海鹰(He H Y), 陈曙辉(Cheng S H). CN 201310014047.9, 2013.
[105]
(a) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134719 A1, 2014.;(b) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134772 A1, 2014.;(c) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134773 A1, 2014.;(d) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134774 A1, 2014.
[1] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[2] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[3] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[4] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[5] 冯泽, 孙旦, 唐有根, 王海燕. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(2/3): 442-454.
[6] 李武, 汪俊洁, 马大为. 对映-贝壳杉烷型二萜的合成[J]. 化学进展, 2019, 31(11): 1460-1471.
[7] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[8] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[9] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[10] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[11] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[12] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[13] 黄启同, 林小凤, 李飞明, 翁文, 林丽萍, 胡世荣. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614.
[14] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[15] 白莹, 李雨, 仲云霞, 陈实, 吴锋, 吴川. 锂离子电池富锂过渡金属氧化物xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)正极材料[J]. 化学进展, 2014, 26(0203): 259-269.
阅读次数
全文


摘要