English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 692-702 DOI: 10.7536/PC180324 前一篇   

• 综述 •

放线菌来源生物碱的生物合成机制

黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*   

  1. 上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
  • 收稿日期:2018-03-16 修回日期:2018-04-02 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 林双君e-mail:linsj@sjtu.edu.cn E-mail:linsj@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(No.21632007)项目资助

Biosynthetic Mechanisms of Alkaloids from Actinomycetes

Tingting Huang, Zihua Zhou, Qi Liu, Xiaozheng Wang, Wenli Guo, Shuangjun Lin*   

  1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-03-16 Revised:2018-04-02 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21632007).
生物碱类天然产物通常具有复杂多样的化学结构和广泛的生物活性,因此备受生物学、化学、药学领域研究者的关注。微生物是仅次于植物的生物碱类天然产物重要来源,微生物尤其是放线菌产生的众多次生代谢产物中,也包括很多生物碱。对放线菌来源生物碱的骨架结构和药效基团生物合成研究,不仅能够丰富人们对天然产物结构形成原理的理解,还可以为运用合成生物学技术人工合成此类化合物提供重要的遗传元件。本文从模块化生物合成和非模块化生物合成两种方式,综述放线菌来源生物碱的生物合成基因簇、途径及其酶催化反应过程。
Alkaloid natural products generally have complex and diverse chemical structures and exhibit a wide range of biological activities, and therefore are of great interest to biologists, chemists, and pharmacists. Apart from plants, microorganisms have been identified as the most important source of natural alkaloids. Microorganisms, especially actinomycetes, produce many secondary metabolites including alkaloids. Studies on the biosynthesis of skeletons and pharmacophores of alkaloids produced by actinomycetes not only enrich our understanding of the biosynthetic mechanism of natural products, but also provide important genetic elements in order to generate these compounds or the derivatives by designed and man-made synthetic pathways in heterologous host using synthetic biology. This review provides a summary of recent research advances in elucidating the biosynthesis of alkaloids from actinomycetes. The detailed biochemical mechanisms have been summarized in modular biosynthetic machineries and non-modular enzymatic systems, respectively.
Contents
1 Introduction
2 Modular biosynthesis of alkaloids
2.1 Diketopiperazine alkaloids
2.2 Pyrrolobenzodiazepines
2.3 Tetrahydroisoquinolines
2.4 Maremycins family
3 Non-modular biosynthesis of alkaloids
3.1 Streptonigrinoids
3.2 Spirocycloproprane family
3.3 Indolocarbazole alkaloids
3.4 Aminobenzoquinone-aziridine alkaloids
4 Conclusion and outlook

中图分类号: 

()
[1] Cushnie T P T, Cushnie B, Lamb A J. Int. J. Antimicrob. Ag., 2014, 44:377.
[2] Amirkia V, Heinrich M. Planta Medica, 2014, 80:1461
[3] Dewick P M. Medicinal Natural Products:A Biosynthetic Approach. UK:Wiley, 2009.
[4] Narcross L, Fossati E, Bourgeois L, Dueber J E, Martin V J J. Trends Biotechnol., 2016, 34:228.
[5] Jaspars M, Challis G. Nature, 2014, 506:38.
[6] Demain A L, Sanchez S. J. Antibiot., 2009, 62:5.
[7] Anarat-Cappillino G, Sattely E S. Curr. Opin. Plant Biol., 2014, 19:51.
[8] Katz L, Baltz R H. J. Ind. Microbiol. Biotechnol., 2016, 43:155.
[9] Hertweck C. Angew. Chem. Int. Ed., 2009, 48:4688.
[10] Fischbach M A, Walsh C T. Chem. Rev., 2006, 106:3468.
[11] Koglin A, Walsh C T. Nat. Prod. Rep., 2009, 26:987.
[12] Khosla C. J. Org. Chem., 2009, 74:6416.
[13] Fischer P M. J. Pept. Sci., 2003, 9:9.
[14] Cornacchia C, Cacciatore I, Baldassarre L, Mollica A, Feliciani F, Pinnen F. Mini-Rev. Med. Chem., 2012, 12:2.
[15] Ma Y M, Liang X A, Kong Y, Jia B. J. Agric. Food Chem., 2016, 64:6659.
[16] Lautru S, Gondry M, Genet R, Pernodet J L. Chem. Biol., 2002, 9:1355.
[17] Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courçon M, Masson C, Dubois S, Lautru S, Lecoq A, Hashimoto S, Genet R, Pernodet J L. Nat. Chem. Biol., 2009, 5:414.
[18] Meng S, Han W, Zhao J, Jian X H, Pan H X, Tang G L. Angew. Chem., Int. Ed., 2018, 57:719.
[19] King R R, Lawrence C H, Calhoun L A, Ristaino J B. J. Agric. Food Chem., 1994, 42:1791.
[20] Healy F G, Wach M, Krasnoff S B, Gibson D M, Loria R. Mol. Microbiol., 2000, 38:794.
[21] Kers J A, Wach M J, Krasnoff S B, Widom J, Cameron K D, Bukhalid R A, Gibson D M, Crane B R, Loria R. Nature, 2004, 429:79.
[22] Barry S M, Kers J A, Johnson E G, Song L J, Aston P R, Patel B, Krasnoff S B, Crane B R, Gibson D M, Loria R, Challis G L. Nat. Chem. Biol., 2012, 8:814.
[23] Gerratana B. Med. Res. Rev., 2012, 32:254.
[24] Hurley L H, Lasswell W L, Ostrander J M, Parry R. Biochemistry, 1979, 18:4230.
[25] Hurley L H, Gairola C. Antimicrob. Agents Chemother., 1979, 15:42.
[26] Li W, Khullar A, Chou S C, Sacramo A, Gerratana B. Appl. Environ. Microbiol., 2009, 75:2869.
[27] Giessen T W, Kraas F I, Marahiel M A. Biochemistry, 2011, 50:5680.
[28] Scott J D, Williams R M. Chem. Rev., 2002, 102:1669.
[29] Siengalewicz P, Rinner U, Mulzer J. Chem. Soc. Rev., 2008, 37:2676.
[30] Le V H, Inai M, Williams R M, Kan T. Nat. Prod. Rep., 2015, 32:328.
[31] Pospiech A, Cluzel B, Bietenhader J, Schupp T. Microbiology, 1995, 141:1793.
[32] Velasco A, Acebo P, Gomez A, Schleissner C, Rodríguez P, Aparicio T, Conde S, Muñoz R, De La Calle F, Garcia J L, Sánchez-Puelles J M. Mol. Microbiol., 2005, 56:144.
[33] Li L, Deng W, Song J, Ding W, Zhao Q F, Peng C, Song W W, Tang G L, Liu W. J. Bacteriol., 2008, 190:251.
[34] Rath C M, Janto B, Earl J, Ahmed A, Hu F Z, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff J J, Kweon H K, Christiansen M A, Håkansson K, Williams R M, Ehrlich G D, Sherman D H. ACS Chem. Biol., 2011, 6:1244.
[35] Pu J Y, Peng C, Tang M C, Zhang Y, Guo J P, Song L Q, Hua Q, Tang G L. Org. Lett., 2013, 15:3674.
[36] Arai T, Yazawa K, Takahashi K, Maeda A, Mikami Y. Antimicrob. Agents Chemother., 1985, 28:5.
[37] Mikami Y, Takahashi K, Yazawa K, Arai T, Namikoshi M, Iwasaki S, Okuda S. J. Biol. Chem., 1985, 260:344.
[38] Koketsu K, Watanabe K, Suda H, Oguri H, Oikawa H. Nat. Chem. Biol., 2010, 6:408.
[39] Vincent G, Lane J W, Williams R M. Tetrahedron Lett., 2007, 48:3719.
[40] Fu C Y. J. Microbiol. Biotechnol., 2009, 19:439.
[41] Tang M C, Fu C Y, Tang G L. J. Biol. Chem., 2012, 287:5112.
[42] Balk-Bindseil W, Helmke E, Weyland H, Laatsch H. Liebigs Annalen, 1995, 1995:1291.
[43] Tang Y Q, Sattler I, Thiericke R, Grabley S, Feng X Z. Eur. J. Org. Chem., 2001, 2001:261.
[44] Lan Y X, Zou Y, Huang T T, Wang X Z, Brock N L, Deng Z X, Lin S J. Sci. China Chem., 2016, 59:1224.
[45] Zou Y, Fang Q, Yin H X, Liang Z T, Kong D K, Bai L Q, Deng Z X, Lin S J. Angew. Chem., Int. Ed., 2013, 52:12951.
[46] Zhang Y Y, Zou Y, Brock N L, Huang T T, Lan Y X, Wang X Z, Deng Z X, Tang Y, Lin S J. J. Am. Chem. Soc., 2017, 139:11887.
[47] Shaikh I A, Johnson F, Grollman A P. J. Med. Chem., 1986, 29:1329.
[48] Chiu Y Y, Lipscomb W N. J. Am. Chem. Soc., 1975, 97:2525.
[49] Herlt A J, Rickards R W, Wu J P. J. Antibiot., 1985, 38:516.
[50] Xu F, Kong D K, He X Y, Zhang Z, Han M, Xie X Q, Wang P, Cheng H R, Tao M F, Zhang L P, Deng Z X, Lin S J. J. Am. Chem. Soc., 2013, 135:1739.
[51] Kong D K, Zou Y, Zhang Z, Xu F, Brock N L, Zhang L P, Deng Z X, Lin S J. Sci. Rep., 2016, 6:20273.
[52] Hartley D L, Speedie M K. Biochem. J., 1984, 220:309.
[53] Speedie M K, Hartley D L. J. Antibiot., 1984, 37, 159.
[54] Han M, Yin H X, Zou Y, Brock N L, Huang T T, Deng Z X, Chu Y W, Lin S J. ACS Catal., 2016, 6:788.
[55] Wo J, Kong D K, Brock N L, Xu F, Zhou X F, Deng Z X, Lin S J. ACS Catal., 2016, 6:2831.
[56] Parrish J P, Kastrinsky D B, Wolkenberg S E, Igarashi Y, Boger D L. J. Am. Chem. Soc., 2003, 125:10971.
[57] Chari R V J, Miller M L, Widdison W C. Angew. Chem. Int. Ed., 2014, 53:3796.
[58] Tichenor M S, MacMillan K S, Trzupek J D, Rayl T J, Hwang I, Boger D L. J. Am. Chem. Soc., 2007, 129:10858.
[59] Huang W, Xu H, Li Y, Zhang F, Chen X Y, He Q L, Igarashi Y, Tang G L. J. Am. Chem. Soc., 2012, 134:8831.
[60] Xu H, Huang W, He Q L, Zhao Z X, Zhang F, Wang R X, Kang J W, Tang G L. Angew. Chem. Int. Ed., 2012, 51:10532.
[61] Yuan H, Zhang J R, Cai Y J, Wu S, Yang K, Chan H C S, Huang W, Jin W B, Li Y, Yin Y, Igarashi Y, Yuan S G, Zhou J H, Tang G L. Nat. Commun., 2017, 8:1485.
[62] Wu S, Jian X H, Yuan H, Jin W B, Yin Y, Wang L Y, Zhao J, Tang G L. ACS Chem. Biol., 2017, 12:1603.
[63] Sánchez C, Méndez C, Salas J A. Nat. Prod. Rep., 2006, 23:1007.
[64] Nakano H, ōmura S. J. Antibiot., 2009, 62:17.
[65] Bush J A, Long B H, Catino J J, Bradner W T. J. Antibiot., 1987, 40:668.
[66] Pereira E R, Belin L, Sancelme M, Prudhomme M, Ollier M, Rapp M, Sevère D, Riou J F, Fabbro D, Meyer T. J. Med. Chem., 1996, 39:4471.
[67] Pearce C J, Doyle T W, Forenza S, Lam K S, Schroeder D R. J. Nat. Prod., 1988, 51:937.
[68] Lam K S, Forenza S, Doyle T W, Pearce C J. J. Ind. Microbiol., 1990, 6:291.
[69] Sánchez C, Butovich I A, Braña A F, Rohr J, Méndez C, Salas J A. Chem. Biol., 2002, 9:519.
[70] Yeh E, Garneau S, Walsh C T. Proc. Natl. Acad. Sci., 2005, 102:3960.
[71] Nishizawa T, Grüschow S, Jayamaha D H E, Nishizawa-Harada C, Sherman D H. J. Am. Chem. Soc., 2006, 128:724.
[72] Howard-Jones A R, Walsh C T. J. Am. Chem. Soc., 2007, 129:11016.
[73] Salas A P, Zhu L L, Sánchez C, Braña A F, Rohr J, Méndez C, Salas J A. Mol. Microbiol., 2005, 58:17.
[74] Zhang C S, Albermann C, Fu X, Peters N R, Chisholm J D, Zhang G S, Gilbert E J, Wang P G, Van Vranken D L, Thorson J S. ChemBioChem, 2006, 7:795.
[75] Anizon F, Moreau P, Sancelme M, Laine W, Bailly C, Prudhomme M. Bioorg. Med. Chem., 2003, 11:3709.
[76] Hata T, Hoshi T, Kanamori K, Matsumae A, Sano Y, Shima T, Sugawara R. J. Antibiot., 1956, 9:141.
[77] Tomasz M, Palom Y. Pharmacol. Ther., 1997, 76:73.
[78] Ishihara M, Kubota T, Watanabe M, Kawano Y, Narai S, Yasui N, Otani Y, Teramoto T, Kitajima M. Oncol. Rep., 1999, 6:621.
[79] Arai H, Kanda Y, Ashizawa T, Morimoto M, Gomi K, Kono M, Kasai M. J. Med. Chem., 1994, 37:1794.
[80] Floss H G, Yu T W, Arakawa K. J. Antibiot., 2011, 64:35.
[81] Varoglu M, Mao Y Q, Sherman D H. Abstracts of Papers of the American Chemical Society, 1999, 217:U165.
[82] Mao Y Q, Varoglu M, Sherman D H. Chem. Biol., 1999, 6:251.
[83] Mao Y Q, Varoglu M, Sherman D H. J. Bacteriol., 1999, 181:2199.
[84] Varoglu M, Mao Y Q, Sherman D H. J. Am. Chem. Soc., 2001, 123:6712.
[85] Grüschow S, Chang L C, Mao Y Q, Sherman D H. J. Am. Chem. Soc., 2007, 129:6470.
[86] Sitachitta N, Lopanik N B, Mao Y Q, Sherman D H. J. Biol. Chem., 2007, 282:20941.
[1] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[2] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[3] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[4] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[5] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[6] 贾斌, 马养民*, 陈镝, 陈璞, 胡岩. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 1067-1081.
[7] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[8] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[9] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[10] 武金丹, 巨勇. 基于天然产物骨架的分子离子识别体系[J]. 化学进展, 2013, 25(11): 1888-1897.
[11] 郜嵩, Sumit Basu, 杨广义, Arijita Deb, 胡明. 天然产物用于癌症化学预防的口服生物利用度问题[J]. 化学进展, 2013, 25(09): 1553-1574.
[12] 刘闯, 王元贵, 耿家青, 姜忠义, 杨冬. 无机纳米粒子的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521.
[13] 王珏, 詹岳雄, 姜标. 海洋二聚吡咯-咪唑类生物碱[J]. 化学进展, 2011, 23(10): 2065-2078.
[14] 朱顺妮, 王忠铭, 尚常花, 周卫征, 杨康, 袁振宏. 微藻脂肪合成与代谢调控[J]. 化学进展, 2011, 23(10): 2169-2176.
[15] 童星, 肖小华, 邓建朝, 王家玥, 李攻科. 低温微波技术在化学研究中的应用[J]. 化学进展, 2010, 22(12): 2462-2468.