English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 684-691 DOI: 10.7536/PC180220 前一篇   后一篇

• 综述 •

耐高温聚酰亚胺泡沫材料

许云汉, 王磊磊, 胡爱军, 袁莉莉, 王志媛, 杨士勇*   

  1. 中国科学院化学研究所高技术材料实验室 北京 100190
  • 收稿日期:2018-02-24 修回日期:2018-04-04 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 杨士勇e-mail:shiyang@iccas.ac.cn E-mail:shiyang@iccas.ac.cn

Polyimide Foams for High Temperature Applications

Yunhan Xu, Leilei Wang, Aijun Hu, Lili Yuan, Zhiyuan Wang, Shiyong Yang*   

  1. The Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-02-24 Revised:2018-04-04 Online:2018-05-15 Published:2018-04-25
聚酰亚胺泡沫具有低介电、隔热、吸声、高比强度以及高经济效益等诸多优点,因而近些年来在航空、航天、船舶航舰、能源与环境保护等领域有着广泛的应用。聚酰亚胺泡沫按照泡孔结构分为软质开孔泡沫和硬质闭孔泡沫两大类,其通常是由芳香族二酐与芳香族二胺通过缩聚反应制备得到分子量可控的聚酯铵盐,再将其作为前驱体经过热发泡制备得到最终的聚酰亚胺泡沫。前驱体的化学结构对最终的聚酰亚胺泡沫的机械性能和热性能都有非常显著的影响,同时前驱体的分子量也会对泡沫的密度、机械性能和热性能有非常显著的影响。聚酰亚胺泡沫的研究进展,特别是其化学结构、性能和应用都会在本文中逐一阐述。
Polyimide foams, due to the outstanding combined properties including low dielectric and thermal insulating, acoustic absorbing, high strength-to-weight ratio, cost effectiveness, etc., have been extensively used in many high-tech fields such as the aerospace, aviation, ship, energy and environmental protection, etc., in recent years. There are two types of polyimide foams, the soft one having opened-cell in structures and the rigid one having closed-cell in structures. Polyimide foams are usually produced by thermal foaming of the polyimide precursor, the molecular weight-controlled poly(amic ester) resins, which are prepared by polycondensation of aromatic dianhydride and aromatic diamines. There are obvious effects of chemical structure of the molecular weight-controlled polyimide precursor resins on mechanical and thermal properties of the polyimide foams. The molecular weights of the polyimide precursor resins also have apparent impacts on the foam densities, mechanical and thermal properties. In this paper, the progress of polyimide foams, especially the chemical structures, properties and applications, will be described.
Contents
1 Introduction
2 Soft and opened-cell polyimide foams
2.1 Development
2.2 Typical properties of soft and opened-cell polyimide foams
2.3 Applications of soft and opened-cell polyimide foams
3 Rigid and closed-cell polyimide foams
3.1 Preparation methods
3.2 Relationship of heat treatment temperature of precursor resin and foam structure
3.3 Relationship of main chain structure of resin and foam properties
4 Conclusion

中图分类号: 

()
[1] Weiser E S, Johnson T F, St Clair T L, Echigo Y, Kaneshiro H, Grimsley B W. High Perform. Polym., 2000, 12:1.
[2] Charlier Y, Hedrick J L, Russell T P. Polymer, 1995, 36:4529.
[3] Cano C I, Weiser E S, Pipes R B. Cell. Polymer, 2004, 23:299.
[4] Robert H W. US 3249561, 1966.
[5] Gagliani J. Fire Resistant Resilient Foams. NAS9-14718, USA:NASA, 1976.
[6] Gagliani J. Development of Fire-Resistant, Low Smoke Generating, Thermally Stable End Items for Aircraft and Spacecraft. San Diego:NASA, 1978.
[7] Barringer J R, Broemmelsiek E H,Lanier C W, Lee R. US 5096932, 1992.
[8] Lee R. US 5122546, 1992.
[9] Barringer J R, Broemmelsiek E H, Lanier C W, Lee R. US 5077318, 1991.
[10] Weiser E S, Grimsley B W, Pipes R B, Williams M K. 47th International SAMPE Symposium and Exhibition. Long Beach, CA:SAMPE, 2002. 1151.
[11] Williams M K, Holland D B, Melendez O, Weiser E S, Brenner J R, Nelson G L. Polym. Degrad. Stab., 2005, 88:20.
[12] WilliamsM K, Weiser E S, Fesmire J E, Grimsley B W, Smith T M, Brenner J R, Nelson G L. Polym. Adv. Technol., 2005, 16:167.
[13] Chu H J,Zhu B K, Xu X Y. J. Appl. Polym. Sci., 2006, 102:1734.
[14] Weiser E S, St Clair T L, Echigo Y, Kaneshiro H. US 6180746, 2001.
[15] Weiser E S. Doctoral Dissertation of the College of William and Mary, 2004.
[16] Hill F U. Method of Manufacturing Polyimide Foam Shapes Having Improved Density and Cell Size Uniformity. US 4923651, 1990.
[17] Weiser E S, St Clair T L, Echigo Y, Kaneshiro H. US 5994418A, 1999.
[18] 吉布森L J (Gibson L J), 阿什比M F (Ashby M F). 多孔固体结构与性能(Cellular Solids:Structure and Properties). 刘培生, 译. (Liu P S, trans). 2版(2nd ed). 北京:清华大学出版社(Beijing:Tsinghua University Press), 2003. 255.
[19] Foam:the "right stuff" for extreme environments. NASA Technical Report 20020064720. Houston:NASA, 2002.
[20] Finckenor M M, Albyn K C, Watts E W. Atomic Oxygen Exposure of Polyimide Foam for International Space Station Solar Array Wing Blanket Box. NASA Technical Report, 20060020185. Alabama:NASA, 2006.
[21] 虞子森(Yu Z S), 蔡正燕(Cai Z Y), 石明伟(Shi M W), 陆卫强(Lu W Q). 造船技术(Marine Technology), 2004(3):39.
[22] Polyimide Foams Offer Superior Insulation. NASA Technical Report, 20120001909. Hampton:NASA, 2012.
[23] Charlier Y, Hedrick J L, Russell T P, Swanson S, Sanchez M, Jérôme R. Polymer, 1995, 36:1315.
[24] Wang L L,Hu A J,Fan L,Yang S Y. High Perform. Polym., 2013, 25:956.
[25] Wang L L,Hu A J,Fan L,Yang S Y. J. Appl. Polym. Sci., 2013, 130:3282.
[1] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶粘剂*[J]. 化学进展, 0, (): 201122-201122.
[2] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[3] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[4] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
[5] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[6] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[7] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[8] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[9] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[10] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.
[11] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[12] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[13] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[14] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[15] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
阅读次数
全文


摘要

耐高温聚酰亚胺泡沫材料