English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 1007-1019 DOI: 10.7536/PC181112 前一篇   后一篇

• •

病毒模板合成的金属纳米材料及应用

杨悦, 王珏玉, 赵敏**(), 崔岱宗**()   

  1. 东北林业大学 哈尔滨 150040
  • 收稿日期:2018-11-15 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 赵敏, 崔岱宗
  • 基金资助:
    国家自然科学基金项目(51678120); 中央高校基本科研业务费专项(2572019AA19)

Virus-Templated Synthesis of Metal Nanomaterials and Their Application

Yue Yang, Jueyu Wang, Min Zhao**(), Daizong Cui**()   

  1. Northeast Forestry University, Harbin 150040, China
  • Received:2018-11-15 Online:2019-07-15 Published:2019-04-26
  • Contact: Min Zhao, Daizong Cui
  • About author:
    ** E-mail:(Min Zhao);
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(51678120); Fundamental Research Funds for the Central Universities(2572019AA19)

金属纳米材料具有界面效应、量子尺寸效应、宏观量子隧道效应等优异的性能及广泛的应用前景,在目前的研究中备受关注。常用于合成纳米材料的生物模板包括DNA、蛋白质、细菌、真菌、病毒等。而以病毒模板合成的金属纳米材料具有良好的稳定性、分散性及生物相容性,其在催化、光学、电学、磁学、化学。超导等领域有优异的表现。首次利用病毒模板合成金属纳米材料以来,经历了二十年发展历程,合成和分析技术日趋成熟,现由体外应用转向活体靶向成像及诊疗一体化方向发展。本文综述了各类病毒模板合成金属纳米材料合成位置(病毒腔内、外)、合成原理、合成方法、合成影响因素、材料表征,及合成材料在纳米催化、纳米电池、生物医学及医学影像学等领域应用的最新进展,在此基础上展望了研究中尚待解决的问题和未来研究方向。

In recent years, metal nanomaterials have been widely used due to their excellent properties, such as interfacial effect, quantum size effect and macroscopic quantum tunneling effect. Biotemplates are often used to synthesize nanomaterials, including DNA, proteins, bacteria, fungi, viruses and so on. The metal nanomaterials, which are synthesized by virus template, compared with other biotemplates, usually have better stability, dispersity and biocompatibility. Moreover, nanomaterials have excellent performances in catalysis, optics, electricity, magnetism, chemistry and superconduction. With nearly 20 years’ development, the technology of nanomaterial synthesis by using virus as template has been gradually matured. Nowadays, research interest is focused on targeted imaging and disease treatment. The object of this review is to discuss the process and the mechanism of nanomaterial biosynthesis by using virus as templates, such as the synthetic sites(inside and outside the virus cavity), synthesis principles, different synthesis methods, influencing factors and nanomaterials characterization. In addition, the applications of these nanomaterials in different fileds, such as nanocatalysis, nano-batteries, biomedical and medical imaging are discussed. Finally, the problems to be solved in the current research and the development trend of the future research on the synthesis of metal nanomaterials by using virus as template are described.

()
表1 合成金属纳米材料常用病毒模板
Table 1 Common virus templates for synthesis of metal nanomaterials
图1 CPMV内合成纳米磁性钴粒子示意图[47]
Fig. 1 Schematic illustration of the nano-magnetic cobalt particles synthesized in CPMV[47]. Copyright 2014, American Chemical Society.
图2 CCMV内部包裹金纳米粒子的合成示意图[52]
Fig. 2 Schematic illustration of synthesis of gold nanoparticles coated in CCMV[52]. Copyright 2016, American Chemical Society.
图3 病毒模板E3-M13合成Pd纳米结构示意图[55]
Fig. 3 Schematic illustration of synthesis of Pd nanostructures by virus template E3-M13[55]. Copyright 2017, Wiley.
图4 Au纳米粒子环组装过程示意图[63]
Fig. 4 Schematic illustration of assembly process of Au nanoparticle ring[63]. Copyright 2012, American Chemical Society.
图5 Pd-TMV纳米催化剂合成及还原重铬酸钾原理示意图[81]
Fig. 5 Schematic illustration of the synthesis of TMV-templated Pd nanocatalyst and catalytic dichromate reduction reaction[81]. Copyright 2014, Elsevier.
图6 锰氧化物纳米线电极结构示意图[85]
Fig. 6 Schematic illustration of manganese oxide nanowire electrode structure[85]. Copyright 2013, Springer Nature.
图7 用于P22内部修饰的ATRP聚合反应示意图[44]
Fig. 7 Schematic illustration of ATRP polymerization for P22 internal modification[44]. Copyright 2012, Springer Nature.
图8 在BMV内部的铁氧化物结构TEM图和植物叶片MR图[99]
Fig. 8 MR images of plant leaves and TEM images of iron oxide structure in BMV[99]. Copyright 2011, American Chemical Society.
图9 SV40包覆量子点在体内外的荧光成像示意图[103,104]
Fig. 9 Schematic illustration of fluorescence imaging of QDs coated with SV40 in vivo and in vitro[103,104]. Copyright 2009,Wiley & Copyright 2015,American Chemical Society.
[1]
Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z, Cui Y . Nat. Commun., 2013,4(3):1943.
[2]
张一(Zhang Y), 田甜(Tian T), 孙艳红(Sun Y H), 诸颖(Zhu Y), 黄庆(Huang Q) . 科学通报 (Chinese Science Bulletin), 2014,59(02):158.
[3]
Li Y, Liu Z, Li Y, Wu Y, Chen J, Liu Y, Na P . Nano, 2018,13(05):1850051.
[4]
Han F, Jiao X, Chen D, Li C . Chemistry-An Asian Journal, 2017,12(17):2284.
[5]
Gan H, Yi F, Zhang H, Qian Y, Jin H, Zhang K . Chinese Journal of Chemical Engineering, 2018,26(12):2628.
[6]
Yang M, Shuai Y, Sunderland K S, Mao C . Adv. Funct. Mater., 2017,27(44):1703726.
[7]
Feng Q, Cai H, Lin H, Qin S, Liu Z, Ma D, Ye Y . Nanotechnology, 2018,29(7):075702
[8]
Zheng J, Song F, Che S, Li W, Ying Y, Yu J, Qiao L . Advanced Powder Technology, 2018,29(6):1474.
[9]
Ezekiel I, Kasim S R, Ismail Y M B, Noor A F M . Ceramics International, 2018,44(11):13082.
[10]
Wang Z, He B, Xu G, Wang G, Wang J, Feng Y, Su D, Chen B, Li H, Wu Z, Zhang H, Shao L, Chen H . Nat. Commun., 2018,9(1):1.
[11]
Nel A E, Madler L, Velegol D, Xia T, Hoek E M, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nat. Mater., 2009,8(7):543.
[12]
Duan X, Li Y . Small, 2013,9(9/10):1521.
[13]
Penner R M, Martin C R . Journal of the Electrochemical Society, 1986,133(10):2206.
[14]
阮秀(Ruan X), 董磊(Dong L), 于晶(Yu J), 于良民(Yu L M), 杨玉臻(Yang Y Z) . 材料导报 (Materials Review), 2012,26(01):56.
[15]
Jeong Y J, Koo W T, Jang J S, Kim D H, Cho H J, Kim I D . Nanoscale, 2018,10(28):13713.
[16]
Lee C Y, Park K S, Jung Y K, Park H G . Biosens. Bioelectron., 2017,93:293.
[17]
Mousavi M F, Mirsian S, Noori A, Ilkhani H, Sarparast M, Moradi N, Bathaie S Z, Mehrgardi M A . Electroanalysis, 2017,29(3):861.
[18]
Dhanalakshmi A, Palanimurugan A, Natarajan B . Carbohydr. Polym., 2017,168:191.
[19]
Fu X, Wang Y, Huang L, Sha Y, Gui L, Lai L, Tang Y . Advanced Materials, 2003,15(11):902.
[20]
Li F, Wang Q . Small, 2014,10(2):230.
[21]
Sierra-Sastre Y, Dayeh S A, Picraux S T, Batt C A . ACS Nano, 2010,4(2):1209.
[22]
Bigall N C, Reitzig M, Naumann W, Simon P, van Pée K H, Eychmüller A . Angewandte Chemie International Edition, 2008,47(41):7876.
[23]
Douglas T, Young M . Nature, 1998,393:152.
[24]
Saunders K, Lomonossoff G P . Front. Plant Sci., 2017,8:1335.
[25]
Manchester M, Singh P . Adv. Drug. Deliv. Rev., 2006,58(14):1505.
[26]
Sinn S, Yang L, Biedermann F, Wang D, Kubel C, Cornelissen J, De Cola L . J.Am. Chem. Soc., 2018,140(6):2355. https://www.ncbi.nlm.nih.gov/pubmed/29357236

doi: 10.1021/jacs.7b12447     URL     pmid: 29357236
[27]
Wnek M, Gorzny M L, Ward M B, Walti C, Davies A G, Brydson R, Evans S D, Stockley P G . Nanotechnology, 2013,24(2):025605.
[28]
Shah S N, Khan A A, Espinosa A, Garcia M A, Nuansing W, Ungureanu M, Heddle J G, Chuvilin A L, Wege C, Bittner A M . Langmuir, 2016,32(23):5899.
[29]
Sun Y, Zhang F, Xu L, Yin Z, Song X . Journal of Materials Chemistry A, 2014,2(43):18583.
[30]
Voet A R, Tame J R . Curr. Opin. Biotechnol., 2017,46:14.
[31]
McCoy K, Uchida M, Lee B, Douglas T . ACS Nano, 2018,12(4):3541.
[32]
Royston E, Ghosh A, Kofinas P, Harris M T, Culver J N . Langmuir, 2008,24(3):906.
[33]
Jones O G, Mezzenga R . Soft Matter, 2012,8(4):876.
[34]
Fontana J, Dressick W J, Phelps J, Johnson J E, Rendell R W, Sampson T, Ratna B R, Soto C M . Small, 2014,10(15):3058.
[35]
Schoonen L, Maassen S, Nolte R J M, van Hest J C M . Biomacromolecules, 2017,18(11):3492.
[36]
Huang X, Bronstein L M, Retrum J, Dufort C, Tsvetkova I, Aniagyei S, Stein B, Stucky G, McKenna B, Remmes N, Baxter D, Kao C C, Dragnea B . Nano Letters, 2007,7(8):2407.
[37]
Loo L, Guenther R H, Lommel S A, Franzen S . Journal of the American Chemical Society, 2007,129(36):11111.
[38]
Royston E S, Brown A D, Harris M T, Culver J N . J.Colloid. Interface. Sci., 2009,332(2):402. https://www.ncbi.nlm.nih.gov/pubmed/19159894

doi: 10.1016/j.jcis.2008.12.064     URL     pmid: 19159894
[39]
Kobayashi M, Seki M, Tabata H, Watanabe Y, Yamashita I . Nano Lett., 2010,10(3):773.
[40]
Goicochea N L, De M, Rotello V M, Mukhopadhyay S, Dragnea B . Nano Lett., 2007,7(8):2281.
[41]
Zhang W, Zhang X E, Li F . Biotechnol. J., 2018,13(6):1700619.
[42]
Zhang Z, Buitenhuis J . Small, 2007,3(3):424.
[43]
Nam Y S, Shin T, Park H, Magyar A P, Choi K, Fantner G, Nelson K A, Belcher A M . Journal of the American Chemical Society, 2010,132(5):1462.
[44]
Lucon J, Qazi S, Uchida M, Bedwell G J, LaFrance B, Prevelige P E, Douglas T . Nat. Chem., 2012,4(10):781.
[45]
Aljabali A A, Sainsbury F, Lomonossoff G P, Evans D J . Small, 2010,6(7):818.
[46]
Dujardin E, Peet C, Stubbs G, Culver J N, Mann S . Nano Lett., 2003,3(3):413.
[47]
Jaafar M, Aljabali A A, Berlanga I, Mas-Balleste R, Saxena P, Warren S, Lomonossoff G P, Evans D J, de Pablo P J . ACS Appl. Mater. Interfaces, 2014,6(23):20936.
[48]
Kobayashi M, Onodera K, Watanabe Y, Yamashita I . Chemistry Letters, 2010,39(6):616.
[49]
Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I . Chemistry of Materials, 2007,19(10):2389.
[50]
Balci S, Bittner A M, Hahn K, Scheu C, Knez M, Kadri A, Wege C, Jeske H, Kern K . Electrochimica Acta, 2006,51(28):6251.
[51]
Dragnea B, Chen C, Kwak E S, Stein B, Kao C C . Journal of the American Chemical Society, 2003,125(21):6374.
[52]
Liu A, Verwegen M, de Ruiter M V, Maassen S J, Traulsen C H, Cornelissen J J . J. Phys. Chem. B, 2016,120(26):6352.
[53]
Loo L, Guenther R H, Basnayake V R, Lommel S A, Franzen S . Journal of the American Chemical Society, 2006,128(14):4502.
[54]
Hou L I, Tong D, Jiang Y, Gao F . Nano, 2014,09(06):1450058.
[55]
Kim I, Kang K, Mi H O, Yang M Y, Park I, Nam Y S . Advanced Functional Materials, 2017,27(48):1703262.
[56]
Everts M, Saini V, Leddon J L, Kok R J, Stoff-Khalili M, Preuss M A, Millican C L, Perkins G, Brown J M, Bagaria H, Nikles D E, Johnson D T, Zharov V P, Curiel D T . Nano Lett., 2006,6(4):587.
[57]
Saini V, Martyshkin D V, Mirov S B, Perez A, Perkins G, Ellisman M H, Towner V D, Wu H, Pereboeva L, Borovjagin A, Curiel D T, Everts M . Small, 2008,4(2):262.
[58]
Balci S, Bittner A M, Schirra M, Thonke K, Sauer R, Hahn K, Kadri A, Wege C, Jeske H, Kern K . Electrochimica Acta, 2009,54(22):5149.
[59]
Zhou J C, Soto C M, Chen M S, Bruckman M A, Moore M H, Barry E, Ratna B R, Pehrsson P E, Spies B R, Confer T S . J.Nanobiotechnol., 2012,10(1):18.
[60]
Shenton W, Douglas T, Young M, Stubbs G, Mann S . Advanced Materials, 1999,11(3):253.
[61]
Bromley K M, Patil A J, Perriman A W, Stubbs G, Mann S . Journal of Materials Chemistry, 2008,18(40):4796.
[62]
Balci S, Noda K, Bittner A M, Kadri A, Wege C, Jeske H, Kern K . Angew. Chem. Int. Ed. Engl., 2007,46(17):3149.
[63]
Zahr O K, Blum A S . Nano Lett., 2012,12(2):629.
[64]
Zhou Z, Bedwell G J, Li R, Bao N, Prevelige P E, Gupta A . Chem. Commun.(Camb.), 2015,51(6):1062.
[65]
Zhou Z, Bedwell G J, Li R, Prevelige P E, Gupta A . Scientific Reports, 2014,4:3832.
[66]
Liu A, Yang L, Verwegen M, Reardon D, Cornelissen J J L M . RSC Advances, 2017,7(89):56328.
[67]
Wang H, Planchart A, Stubbs G . Biophysical Journal, 1998,74(1):633.
[68]
Kusters R, Lin H K, Zandi R, Tsvetkova I, Dragnea B, van der Schoot P . J. Phys. Chem. B, 2015,119(5):1869.
[69]
Zhang S, Nakano K, Zhang S L, Yu H M . Journal of Nanoparticle Research, 2015,17(10):1.
[70]
Adigun O O, Novikova G, Retzlaff-Roberts E L, Kim B, Miller J T, Loesch-Fries L S, Harris M T . J. Colloid. Interface Sci., 2016,483:165. https://www.ncbi.nlm.nih.gov/pubmed/27552425

doi: 10.1016/j.jcis.2016.07.028     URL     pmid: 27552425
[71]
Mao C, Solis D J, Reiss B D, Kottmann S T, Sweeney R Y, Hayhurst A, Georgiou G, Iverson B, Belcher A M . Science, 2004,303(5655):213.
[72]
Bedwell G J, Zhou Z, Uchida M, Douglas T, Gupta A, Prevelige P E . Biomacromolecules, 2015,16(1):214.
[73]
Chatterji A, Ochoa W F, Ueno T, Lin T, Johnson J E . Nano Lett., 2005,5(4):597.
[74]
Radloff C, Vaia R A, Brunton J, Bouwer G T, Ward V K . Nano Lett., 2005,5(6):1187.
[75]
Tresilwised N, Pithayanukul P, Holm P S, Schillinger U, Plank C, Mykhaylyk O . Biomaterials, 2012,33(1):256.
[76]
Daniel M C, Tsvetkova I B, Quinkert Z T, Murali A, De M, Rotello V M, Kao C C, Dragnea B . ACS Nano, 2010,4(7):3853.
[77]
Sun J, DuFort C, Daniel M C, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello V M, Holzenburg A, Kao C C, Dragnea B . Proceedings of the National Academy of Sciences, 2007,104(4):1354.
[78]
徐兴良(Xu X L), 李莉萍(Li L P), 张丹(Zhang D), 王彦(Wang Y), 李广社(Li G S) . 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2017,33(11):1970.
[79]
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X Y . Nat. Nanotechnol., 2007,2(9):577.
[80]
Yang C, Manocchi A K, Lee B, Yi H . Applied Catalysis B: Environmental, 2010,93(3/4):282.
[81]
Yang C, Meldon J H, Lee B, Yi H . Catalysis Today, 2014,233:108.
[82]
Yang C, Yi H . ChemCatChem, 2015,7(14):2015.
[83]
Manivannan S, Kang I, Seo Y, Jin H E, Lee S W, Kim K . ACS Appl. Mater. Interfaces, 2017,9(38):32965.
[84]
Lee Y, Kim J, Yun D S, Nam Y S, Shao-Horn Y, Belcher A M . Energy Environ. Sci., 2012,5(8):8328.
[85]
Oh D, Qi J, Lu Y C, Zhang Y, Shao-Horn Y, Belcher A M . Nature Communications, 2013,4:2756.
[86]
Oh D, Qi J, Han B, Zhang G, Carney T J, Ohmura J, Zhang Y, Shao-Horn Y, Belcher A M . Nano Lett., 2014,14(8):4837.
[87]
Moradi M, Li Z, Qi J, Xing W, Xiang K, Chiang Y M, Belcher A M . Nano Lett., 2015,15(5):2917.
[88]
Chu S, Gerasopoulos K, Ghodssi R . Electrochimica Acta, 2016,220:184.
[89]
Lebedev N, Griva I, Dressick W J, Phelps J, Johnson J E, Meshcheriakova Y, Lomonossoff G P, Soto C M . Biosensors and Bioelectronics, 2016,77:306.
[90]
Lee H E, Lee H K, Chang H, Ahn H Y, Erdene N, Lee H Y, Lee Y S, Jeong D H, Chung J, Nam K T . Small, 2014,10(15):3007.
[91]
Yan Y, Zhang M, Moon C H, Su H C, Myung N V, Haberer E D . Nanotechnology, 2016,27(32):325502.
[92]
Michael A B, Xin Y, Nicole F S . Nanotechnology, 2013,24(46):462001.
[93]
Usselman R J, Qazi S, Aggarwal P, Eaton S S, Eaton G R, Russek S, Douglas T . Appl. Magn. Reson., 2015,46(3):349.
[94]
Allen M, Bulte J W, Liepold L, Basu G, Zywicke H A, Frank J A, Young M, Douglas T . Magn. Reson. Med., 2005,54(4):807.
[95]
Kosuge H, Uchida M, Lucon J, Qazi S, Douglas T, McConnell M V . Journal of Cardiovascular Magnetic Resonance, 2013,15(1):O66.
[96]
Qazi S, Liepold L O, Abedin M J, Johnson B, Prevelige P, Frank J A, Douglas T . Mol. Pharm., 2013,10(1):11.
[97]
Hooker J M, Datta A, Botta M, Raymond K N, Francis M B . Nano Lett., 2007,7(8):2207.
[98]
Millán J G, Brasch M, Anaya-Plaza E, de la Escosura A, Velders A H, Reinhoudt D N, Torres T, Koay M S T, Cornelissen J J L M . Journal of Inorganic Biochemistry, 2014,136:140.
[99]
Huang X, Stein B D, Cheng H, Malyutin A, Tsvetkova I B, Baxter D V, Remmes N B, Verchot J, Kao C, Bronstein L M, Dragnea B . ACS Nano, 2011,5(5):4037.
[100]
Martinez-Morales A A, Portney N G, Zhang Y, Destito G, Budak G, Ozbay E, Manchester M, Ozkan C S, Ozkan M . Advanced Materials, 2008,20(24):4816.
[101]
Ghosh D, Lee Y, Thomas S, Kohli A G, Yun D S, Belcher A M, Kelly K A . Nat. Nanotechnol., 2012,7(10):677.
[102]
Lewis J D, Destito G, Zijlstra A, Gonzalez M J, Quigley J P, Manchester M, Stuhlmann H . Nat. Med., 2006,12(3):354.
[103]
Li F, Zhang Z P, Peng J, Cui Z Q, Pang D W, Li K, Wei H P, Zhou Y F, Wen J K, Zhang X E . Small, 2009,5(6):718.
[104]
Li C, Li F, Zhang Y, Zhang W, Zhang X E, Wang Q . ACS Nano, 2015,9(12):12255.
[105]
Zhang Y, Ke X, Zheng Z, Zhang C, Zhang Z, Zhang F, Hu Q, He Z, Wang H . ACS Nano, 2013,7(5):3896.
[106]
Li Q, Li W, Yin W, Guo J, Zhang Z P, Zeng D, Zhang X, Wu Y, Zhang X E, Cui Z . ACS Nano, 2017,11(4):3890.
[107]
Barnhill H N, Claudel-Gillet S, Ziessel R, Charbonnière L J, Wang Q . Journal of the American Chemical Society, 2007,129(25):7799.
[108]
Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z . ACS Nano, 2015,9(5):5223.
[109]
Bennett K M, Jo J I, Cabral H, Bakalova R, Aoki I . Adv. Drug Deliv. Rev., 2014,74:75.
[110]
Wang F, Cao B, Mao C . Chem. Mater., 2010,22(12):3630.
[111]
Ma Y, Nolte R J, Cornelissen J J . Adv. Drug Deliv. Rev., 2012,64(9):811.
[112]
Kushnir N, Streatfield S J, Yusibov V . Vaccine, 2012,31(1):58.
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[5] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[6] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[7] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[8] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[9] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[10] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[11] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[12] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[13] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[14] 邓广, 杨红, 周治国*, 杨仕平*. T1-T2双模式磁共振造影剂的设计及应用[J]. 化学进展, 2018, 30(10): 1534-1547.
[15] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.