中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1978-1989 DOI: 10.7536/PC200409 Previous Articles   Next Articles

• Review •

3D Printing of Polymer Precursor Derived High Performance Ceramics

Lijuan He1,*(), Delong Kong1, Caihong Xu2, Chaoshuai Lei1, Wenjing Li1, Yingmin Zhao1   

  1. 1 Institute of Aerospace Special Materials and Technology, Beijing 100074, China
    2 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Lijuan He
Richhtml ( 65 ) PDF ( 1217 ) Cited
Export

EndNote

Ris

BibTeX

3D printing to prepare ceramics can realize structure-material design integration, which provides new opportunities for rapid prototyping of ceramic materials with complex shapes. However, traditional 3D printing for preparing ceramics uses ceramic powder or ceramic particles as the printing material, which has problems such as poor dimensional accuracy of ceramic components, low surface finish, and poor mechanical properties. In recent years, the emergence of technology that uses polymer precursors to produce ceramic materials with complex shapes through processes of 3D printing molding and pyrolysis provides new methods to improve this situation. It has become one of the most popular research topics in the field of 3D printing to prepare ceramics. This article summarizes the research progress of 3D printing of polymer precursor derived high performance ceramics, focusing on research status of the five typical material systems: bulk polymer precursors, polymer precursors/photosensitive compounds blends, polymer precursors/thiol compounds blends, photosensitive group-modified polymer precursors, and reinforcement/polymer precursors. Besides, an outlook for future development of 3D printing of polymer precursor derived advanced ceramics is given.

Contents

1 Introduction

2 3D printing of polymer precursor derived ceramics

2.1 Bulk polymer precursors

2.2 Polymer precursors/photosensitive compounds blends

2.3 Polymer precursors/thiol compounds blends

2.4 Photosensitive group modified polymer precursors

2.5 Reinforcement/polymer precursors

3 Conclusion and outlook

Scheme 1 Two-component carbosilane gelation
Fig.1 Aerosol jet printing of the two-component polycarbosilane system and subsequent conversion to ceramic. Printed polycarbosilane system as (a) cured and (b) pyrolyzed. Surface topology of the SiOC line(b) is presented in (c). (d) Laser scanning microscope image of pyrolyzed two-component AFRL logo[49]. Copyright 2018, American Chemical Society
Scheme 2 Schematic structure of the PBSN
Fig.2 The pictures of(a, b, c) the printed green components and(d, e, f) the corresponding pyrolyzed SiBCN ceramic components[54]. Copyright 2018, Elsevier
Fig.3 Examples of ceramic parts derived from AMHPCS/HDDA samples produced by SLA(top). Comparison of printed and sintered samples(bottom)[9]. Copyright 2017, Elsevier
Scheme 3 Schematic structure of the preceramic polymers: polycarbosilane(left), polysiloxanes(middle), polycarbosilazane(right)
Fig.4 Additive manufacturing of polymer-derived ceramics.(A) UV-curable preceramic monomers are mixed with photoinitiator.(B) The resin is exposed with UV light in a SLA 3D printer or through a patterned mask.(C) A preceramic polymer part is obtained.(D) Pyrolysis converts the polymer into a ceramic.Examples:(E) SLA 3D printed cork screw.(F and G) SPPW formed microlattices.(H) Honeycomb[44]. Copyright 2016, American Association for the Advancement of Science
Scheme 4 Scheme 4 Schematic structure of MK siloxane resin and TMSPM
Scheme 5 Scheme 5 Condensation reaction between γ-methacryloxypro-pyl trimethoxy and polyhydroxymethylsiloxane
Fig.5 (a) Schematic of the preparation of octet truss porous structure ZrOC ceramic.(b) The pictures of octet truss structured specimens after pyrolysis at different temperatures[73]. Copyright 2019, Elsevier
Scheme 6 Scheme 6 Ligand exchange reaction to add acrylic functional groups onto titanium clusters
Fig.6 (a) A schematic of the SLA instrument to pattern titanium-containing photoresist into complex 3D geometries.(b) before and (c) after pyrolysis.(d) Top view of a titania octet lattice(optical image). SEM images of(e) a representative node in the unit cell of an octet lattice and (f, g) titania nano-crystallites on the surface of the structure[74]. Copyright 2018, Elsevier
Fig.7 (a) Designed lattice structure CAD model. (b) Side view picture and (c) front view picture of the green body and ceramic component. (d) Picture of ceramic component pinched with fingers [87] . Copyright 2018, Elsevier
Scheme 7 Scheme 7 Chemical structure of polyvinylmethoxysiloxane
[1]
Pham T A , Kim D P , Lim T W , Park S H , Yang D Y , Lee K S . Adv. Funct. Mater., 2006, 16: 1235.
[2]
Mondschein R J , Kanitkar A , Williams C B , Verbridge S S , Long T E . Biomaterials, 2017, 140: 170.
[3]
Colombo P , Schmidt J , Franchin G , Zocca A , Günster J . J. Am Ceram. Soc. Bull., 2017, 96: 16.
[4]
Travitzky N , Bonet A , Dermeik B , Fey T , Filbert-Demut I , Schlier L , Schlordt T , Greil P . Adv. Eng. Mater., 2014, 16: 729.
[5]
Macdonald E , Wicker R . Science, 2016, 353: aaf2093.
[6]
Martin J , Yahata B , Hundley J , Mayer J , Schaedler T , Pollock T . Nature, 2017, 549: 365.
[7]
Kelly B , Bhattacharya I , Heidari H , Shusteff M , Spadaccini C , Taylor H . Science, 2019, 363: eaau7114.
[8]
Walker D , Hedrick J , Mirkin C . Science, 2019, 366: 360.
[9]
De Hazan Y , Penner D. J. Eur. Ceram. Soc., 2017, 37: 5205.
[10]
Lasgorceix M , Champion E , Chartier T . J. Eur. Ceram. Soc., 2016, 36: 1091.
[11]
Shao H P , Zhao D C , Lin T , He J Z , Wu J . Ceram. Int., 2017, 43: 13938.
[12]
An D , Li H Z , Xie Z P , Zhu T B , Luo X D , Shen Z J , Ma J . Int. J. Appl. Ceram. Tec., 2017, 14: 836.
[13]
Minas C , Carnelli D , Tervoort E , Studart A R . Adv. Mater., 2016, 28: 9993.
[14]
Yuan S , Shen F , Chua C K , Zhou K . Prog. Polym. Sci., 2019, 91: 141.
[15]
Chen A N , Wu J M , Liu K , Chen J Y , Xiao H , Chen P , Li C H , Shi Y S . Adv. Appl. Ceram., 2018, 117: 100.
[16]
Chen A N , Li M , Wu J M , Cheng L J , Liu R Z , Shi Y S , Li C H . J. Alloy. Compd., 2019, 776: 486.
[17]
Yu W H , Sing S L , Chua C K , Kuo C N , Tian X L . Prog. Mater. Sci., 2019, 104: 330.
[18]
Minasyan T , Liu L , Aghayan M , Kollo L , Kamboj N , Aydinyan S , Hussainova I . Ceram. Int., 2018, 44: 13689.
[19]
Xiao S , Mei H , Han D , Yuan W , Cheng L . Ceram. Int., 2018, 44: 14122.
[20]
Huang S , Ye C , Zhao H , Fan Z . Addit. Manuf., 2019, 29: 100802.
[21]
Li K , Zhao Z . Ceram. Int., 2017, 43: 4761.
[22]
Lian Q , Sui W , Wu X , Yang F , Yang S . Rapid. Prototyping J., 2018, 24: 114.
[23]
Wu H , Liu W , He R , Wu Z , Jiang Q , Song X , Chen Y , Cheng L , Wu S . Ceram. Int., 2017, 43: 968.
[24]
Santoliquido O , Colombo P , Ortona A . J. Eur. Ceram. Soc., 2019, 39: 2140.
[25]
Chen Z W , Liu C B , Li J J , Zhu J Y , Liu Y , Lao C S , Feng J , Jiang M G , Liu C Y , Wang P , Li Y . Ceram. Int., 2019, 45: 19257.
[26]
Mei H , Huang W , Liu H , Pan L , Cheng L . Ceram. Int., 2019, 45: 15223.
[27]
Cano S , Gonzalez-Gutierrez J , Sapkota J , Spoerk M , Arbeiter F , Schuschnigg S , Holzer C , Kukla C . Addit. Manuf., 2019, 26: 117.
[28]
Tian X , Jin J , Yuan S , Chua C K , Tor S B , Zhou K . Adv. Energy. Mater., 2017, 7: 1700127.
[29]
Park S A , Lee S H , Kim W D . Bioproc. Biosyst. Eng., 2011, 34: 505.
[30]
Franchin G , Maden H S , Wahl L , Baliello A , Pasetto M , Colombo P . Materials(Basel), 2018, 11: 515.
[31]
Zhu C , Han, T Y J, Duoss E B, Golobic A M, Kuntz J D, Spadaccini C M, Worsley M A. Nat. Commun., 2015, 6: 6962.
[32]
Liao J J , Chen H H , Luo H , Wang X F , Zhou K C , Zhang D . J. Mater. Chem. C, 2017, 5: 5867.
[33]
Liu S C , Ye F , Liu L M , Liu Q . Mater. Design., 2015, 66: 331.
[34]
Cawley J D. Am. Ceram. Soc. Bull., 1996, 75: 75.
[35]
Deckers J , Vleugels J , Kruthl J . J. Ceram. Sci. Technol., 2014, 5: 245.
[36]
Ishikawa T , Kajii S , Matsunaga K , Hogami T , Kohtoku Y , Nagasawa T . Science, 1998, 282: 1295.
[37]
An L N , Xu W X , Rajagopalan S , Wang C M , Wang H , Fan Y , Zhang L G , Jiang D P , Kapat J , Chow L , Guo B H , Liang J , Vaidyanathan R . Adv. Mater., 2004, 16: 2036.
[38]
Colombo P , Mera G , Riedel R , Sorarù G D . J. Am. Ceram. Soc., 2010, 93: 1805.
[39]
Riedel R , Mera G , Hauser R , Klonczynski A . J. Ceram. Soc. Jpn., 2006, 114: 425.
[40]
Fu S Y , Zhu M , Zhu Y F . J. Adv. Ceram., 2019, 8: 457.
[41]
Layani M , Wang X , Magdassi S . Adv. Mater., 2018, 30: 1706344.
[42]
Chen Z W , Li Z Y , Li J J , Liu C B , Lao C S , Fu Y L , Liu C Y , Li Y , Wang P , He Y . J. Eur. Ceram. Soc., 2019, 39: 661.
[43]
Zanchetta E , Cattaldo M , Franchin G , Schwentenwein M , Homa J , Brusatin G , Colombo P . Adv. Mater., 2016, 28: 370.
[44]
Eckel Z , Zhou C Y , Martin J , Jacobsen A , Carter W , Schaedler T . Science, 2016, 351: 58.
[45]
Kousaalya A B , Kumar R , Sridhar B T N . Ceram. Int., 2015, 41: 1163.
[46]
Zhang Q , Yang Z , Jia D , Chen Q , Zhou Y . New Journal of Chemistry, 2016, 40( 8): 7034.
[47]
Bernardo E , Fiocco L , Parcianello G , Storti E , Colombo P . Materials, 2014, 7: 1927.
[48]
Zocca A , Wirth C , Staude A , Bernardo E , Günster J , Colombo P . J. Mater. Res., 2013, 28: 2243.
[49]
Baldwin L A , Rueschhoff L M , Deneault J R , Cissel K S , Ni-kolaev P , Cinibulk M K , Koerner H , Dalton M J , Dickerson M B . Chem. Mater., 2018, 30: 7527.
[50]
Zocca A , Franchin G , Elsayed H , Gioffredi E , Bernardo E , Colombo P . J. Am. Ceram. Soc., 2016, 99: 1960.
[51]
Yuk H , Zhao X . Adv. Mater., 2018, 30: 1704028.
[52]
Zocca A , Colombo P , Gomes C M , Günster J . J. Am. Ceram. Soc., 2015, 98: 1983.
[53]
Chen H H , Wang X F , Xue F D , Huang Y J , Zhou K C , Zhang D . J. Eur. Ceram. Soc., 2018, 38: 5294.
[54]
Li S , Duan W Y , Zhao T , Han W J , Wang L , Dou R , Wang G . J. Eur. Ceram. Soc., 2018, 38: 4597.
[55]
Riedel R , Kienzle A , Dressler W , Ruwisch L , Bill J , Aldinger F . Nature, 1996, 382: 796.
[56]
Zhao H , Chen L X , Luan X G , Zhang X F , Yun J , Xu T T . J. Eur. Ceram. Soc., 2017, 37: 1321.
[57]
Zhou C , Min H , Yang L , Chen M Y , Wen Q B , Yu Z J . J. Eur. Ceram. Soc., 2014, 34: 3579.
[58]
Zhang P F , Jia D C , Yang Z H , Duan X M , Zhou Y J . Mater. Sci., 2012, 47: 7291.
[59]
Seifert H J , Peng J , Golczewski J , Aldinger F . Appl. Organ-omet. Chem., 2001, 15: 794.
[60]
Schmidt J , Colombo P . J. Eur. Ceram. Soc., 2018, 38: 57.
[61]
Li Z Y , Chen Z W , Liu J , Fu Y L , Liu C Y , Wang P , Jiang M G , Lao C S . Virtual. Phys. Prototyp., 2020, 15: 163.
[62]
Wang M , Chen X , He R J , Ding G J , Zhang K Q , Wang G , Fang D N . J. Am. Ceram. Soc., 2019, 102: 5117.
[63]
Reddy S K , Cramer N B , O’Brien A K , Cross T , Raj R , Bowman C N . Macromol. Symp., 2004, 206: 361.
[64]
Wang X F , Schmidt F , Hanaor D , Kamm P H , Li S , Gurlo A . Addit. Manuf., 2019, 27: 80.
[65]
Ovsianikov A , Viertl J , Chichkov B , Oubaha M , MacCraith B , Sakellari I , Giakoumaki A , Gray D , Vamvakaki M , Farsari M , Fotakis C . ACS Nano, 2008, 2: 2257.
[66]
Vyatskikh A , Delalande S , Kudo A , Zhang X , Portela C M , Greer J R . Nat. Commun., 2018, 9: 593.
[67]
Zheng X Y , Lee H , Weisgraber T H , Shusteff M , DeOtte J , Deoss E B , Kuntz J D , Biener M M , Ge Q , Jackson J A , Kucheyev S O , Fang N X , Spadaccini C M . Science, 2014, 344: 1373.
[68]
Hundley J M , Eckel Z C , Schueller E , Cante K , Biesboer S M , Yahata B D , Schaedler T A . Addit. Manuf., 2017, 18: 95.
[69]
Hoyle C E , Bowman C N . Angew. Chem. Int. Ed., 2010, 49: 1540.
[70]
Schwentenwein M , Homa J . Int. J. Appl. Ceram. Tec., 2015, 12: 1.
[71]
Studart A R , Gonzenbach U T , Tervoort E , Gauckler L J . J. Am. Ceram. Soc., 2006, 89: 1771.
[72]
Ma C , He C , Wang W L , Yao X Y , Yan L W , Hou F , Liu J C , Guo A R . Virtual. Phys. Prototyp., 2020, 15: 294.
[73]
Fu Y L , Chen Z W , Xu G , Wei Y , Lao C S . J. Alloy. Compd., 2019, 789: 867.
[74]
Vyatskikh A , Kudo A , Delalande S , Greer J R . Mater. Today. Commun., 2018, 15: 288.
[75]
Tiainen H , Lyngstadaas S P , Ellingsen J E , Haugen H J . J. Mater. Sci-Mater. M., 2010, 21: 2783.
[76]
Xu X B , Li P Y , Ge C H , Han W F , Zhao D , Zhang X D . ChemistrySelect, 2019, 4: 6862.
[77]
Brigo L , Schmidt J E M , Gandin A , Michieli N , Colombo P , Brusatin G . Adv. Sci., 2018, 5: 1800937.
[78]
Greil P. J.Am. Ceram. Soc., 1995, 78: 835.
[79]
Kaindl A , Lehner W , Greil P , Kim D J . Mater. Sci. Eng. C, 1999, 260: 101.
[80]
Cromme P , Scheffler M , Greil P . Adv. Eng. Mater., 2002, 4: 873.
[81]
Dernovsek O , Bressiani J C , Bressiani A H A , Acchar W , Greil P . J. Mater. Sci., 2000, 35: 2201.
[82]
Friedel T , Travitzky N , Niebling F , Scheffler M , Greil P . J. Eur. Ceram. Soc., 2005, 25: 193.
[83]
Gyak K W , Vishwakarma N K , HwangY H , Kim J , Yun H S , Kim D P . React. Chem. Eng., 2019, 4: 1393.
[84]
O'Masta M R , Stonkevitch E , Porter K A , Bui P P , Eckel Z C , Schaedler T A . J. Am. Ceram. Soc., 2020,
[85]
Schmidt J , Altun A A , Schwentenwein M , Colombo P . J. Eur. Ceram. Soc., 2019, 39: 1336.
[86]
Gorjan L , Tonello R , Sebastian T , Colombo P , Clemens F . J. Eur. Ceram. Soc., 2019, 39: 2463.
[87]
Fu Y L , Xu G , Chen Z W , Liu C Y , Wang D M , Lao C S . Ceram. Int., 2018, 44: 11030.
[88]
Lehman J , Yung C , Tomlin N , Conklin D , Stephens M . Appl. Phys. Rev., 2018, 5: 011103.
[89]
Gao E L , Lu W B , Xu Z P , Xu Z P . Carbon, 2018, 138: 134.
[90]
Wang Y J , Li M , Gu Y Z , Zhang X H , Wang S K , Li Q W , Zhang Z G . Nanoscale, 2015, 7: 3060.
[91]
Xiao J , Liu D Q , Cheng H F , Jia Y , Zhou S , Zu M . Ceram. Int., 2020, 46: 19393.
[92]
Franchin G , Wahl L , Colombo P . J. Am. Ceram. Soc., 2017, 100: 4397.
[93]
Xiong H W , Zhao L Z , Chen H H , Wang X F , Zhou K C , Zhang D . J. Alloy. Compd., 2019, 809: 151824.
[94]
Li S , Zhang Y B , Zhao T , Han W J , Duan W Y , Wang L , Dou R , Wang G . RSC Adv., 2020, 10: 5681.
[95]
Brinckmann S A , Patra N , Yao J , Ware T H , Frick C P , Fertig III R S . Adv. Eng. Mater., 2018, 20: 1800593.
[96]
Halloran J W. Annu. Rev. Mater. Res., 2016, 46: 19.
[97]
Bae C J , Halloran J W . Int. J. Appl. Ceram. Tec., 2011, 8: 1255.
[98]
Xiong H W , Chen H L , Zhao L Z , Huang Y J , Zhou K C , Zhang D . J. Eur. Ceram. Soc., 2019, 39: 2648.
[99]
Novoselov K S , Geim A K , Morozov S V , Jiang D Zhang Y, Dubonos S V , Grigorieva I V , Firsov A A . Science, 2004, 306: 666.
[100]
Santos Tonello K P D, Padovano E , Badini C , Biamino S , Pavese M , Fino P. Mat. Sci. Eng. A, 2016, 659: 158.
[101]
Román-Manso B , Domingues E , Figueiredo F M , Belmonte M , Miranzo P . J. Eur. Ceram. Soc., 2015, 35: 2723.
[102]
Pierin G , Grotta C , Colombo P , Mattevi C . J. Eur. Ceram. Soc., 2016, 36: 1589.
[103]
Pakdel A , Bando Y , Golberg D . Chem. Soc. Rev., 2014, 43: 934.
[104]
Glavin N R , Jespersen M L , Check M H , Hu J , Hilton A M , Fisher T S , Voevodin A A . Thin Solid Films, 2014, 572: 245.
[105]
Kemp J W , Hmeidat N S , Compton B G . J. Am. Ceram. Soc., 2020, 103: 4043.
[106]
David L , Bernard S , Gervais C , Miele P , Singh G . J. Phys. Chem. C, 2015, 119: 2783.
[1] Xiaoxue Gu, Jing Yu, Mingying Yang, Yajun Shuai. Silk Fibroin-Based 3D Printing Strategies for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(6): 1359-1368.
[2] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[3] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[4] Jian Kang, Le Zhang, Fangzheng Zhen, Yingshuang Shan, Yuelong Ma, Hao Chen. Light-Conversion Materials for High-Lumen Density Laser Illumination [J]. Progress in Chemistry, 2019, 31(2/3): 322-336.
[5] Yang Lujiao, Zhang Ying, Cheng Xuan. Performance and Structure of Polymer Derived SiBCN Ceramics [J]. Progress in Chemistry, 2016, 28(2/3): 308-316.
[6] Han Jinduo, Wen Zhaoyin, Zhang Jingchao, Ma Guoqiang, Chi Xiaowei. CaZrO3 Based High Temperature Proton Conductors [J]. Progress in Chemistry, 2012, (9): 1845-1856.
[7] Chen Ting, Zhao Hailei, Xie Zhixiang, Xu Jingcan, Xu Nansheng, Li Fushen. Dense Dual-Phase Oxygen Permeation Membranes [J]. Progress in Chemistry, 2012, 24(01): 163-172.
[8] Xiao Chengjian, Chen Xiaojun, Kang Chunmei, Wang Xiaolin. Material Properties and Tritium Release Behavior of Neutron-irradiated Ceramic Tritium Breeders [J]. Progress in Chemistry, 2011, 23(9): 1906-1914.
[9]

Yu Jian|Hu Xiaojuan|Huang Yan**

. Ceramic Modification of the Porous Stainless-Steel Surface Toward the Supported Palladium Membranes for Hydrogen Separation [J]. Progress in Chemistry, 2008, 20(0708): 1208-1215.
[10] Luo Min1** Gao Jiqiang2 Qiao Guanjun2 Jin Zhihao2. Synthesis of Wood-Derived Ceramics from Biological Templates [J]. Progress in Chemistry, 2008, 20(06): 989-1000.
[11] Kong Jie**, Zhang Guobin, Liu Qin. Molecular Design and Synthesis of Polyborosilazane Precurosors for SiBCN Ceramics [J]. Progress in Chemistry, 2007, 19(11): 1791-1799.
[12] Xiong Liangping|Xu Yunshu*. Application of Preceramic Polymers [J]. Progress in Chemistry, 2007, 19(04): 567-574.
[13] Cui Mengzhong1,2,Li Zhuyun2,Yuan Weizhong1,Xi Jingyu1,Zhu Lu1,Tang Xiaozhen1*. Progress in Organic Polysilanes Interrupted by Oxygen [J]. Progress in Chemistry, 2005, 17(05): 860-867.
[14] Zhai Yi,Zhang Jinli,Li Wei**,Wang Yiping. Preparation and Application of the Self-Assembled Monolayers [J]. Progress in Chemistry, 2004, 16(04): 477-.
[15] Wang Xuejie,Wang Li**. The Development of Synthesis and Property of Polyferrocenophane with High Molecular Weight Prepared by Ring-opening Polymerization (ROP) [J]. Progress in Chemistry, 2002, 14(06): 486-.