中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 381-391 DOI: 10.7536/PC190739 Previous Articles   Next Articles

Synthesis and Applications of Chiral Carbon Quantum Dots

Yingying Wei1,2, Lin Chen2, Junli Wang2, Shiping Yu2,3, Xuguang Liu1,2,**(), Yongzhen Yang2,**()   

  1. 1. The Institute of New Carbon Materials, Taiyuan University of Technology, Jinzhong 030600, China
    2. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Eduction, Taiyuan University of Technology, Taiyuan 030024, China
    3. Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received: Revised: Online: Published:
  • Contact: Xuguang Liu, Yongzhen Yang
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(51803148,U1710117); the Shanxi Provincial Excellent Talents Science and Technology Innovation Project(201805D211001)
Richhtml ( 91 ) PDF ( 1638 ) Cited
Export

EndNote

Ris

BibTeX

Chiral carbon quantum dots(CQDs) have wide application potential in catalysis, detection and biomedicine owing to their excellent fluorescence properties, good biocompatibility, low toxicity, easy functionalization and chiral characteristics. At present, chiral CQDs are synthesized by one-step or two-step methods, and applied to chiral catalysis, chiral detection, Golgi apparatus targeted imaging, selective tuning of enzyme and protein activity, selective regulation of cellular energy metabolism, promotion of plant growth, etc. However, the development of chiral CQDs is just beginning. It is necessary to further improve the controllable synthesis process and prepare long wavelength chiral CQDs with high fluorescence quantum yield, so as to make them shine brilliantly in biomedical and other fields.

Table 1 Summary of synthesis routes for chiral CQDs[10, 34,35, 57~69]
Fig. 1 Synthesis of chiral CQDs by chemical oxidation. (A) chiral CQDs synthesized from graphite and (R)/(S) -2-phenyl-1-propanol[57]; (B) L-/D-CQDs synthesized from carbon fiber and L-/D-Cys[58]; (C) CD spectrum of L-/D-CQDs[58]
Fig. 2 Chiral CQDs synthesized by pyrolysis from (A) citric acid and L-Cys[35], (B) citric acid and L-/D-Cys[59], (C) citric acid, ethylenediamine and L-Cys[60], respectively
Fig. 3 Chiral CQDs synthesized from (A) citric acid and L-/D-Cys[65], (B) L-/D-Cys[34], (C) L-/D-Lys[10], (D) L-/D-Cys[67], (E) L-/D-Trp[69] by one-step hydrothermal method
Fig. 4 Synthesis mechanism of L-CQDs[69]
Fig. 5 The color change of (A) L-/D-CQDs aqueous solution and (B) L-/D-CQDs embedded NPs under UV light after adding different concentrations of L-/D-Lys[60]
Fig. 6 (A) Fluorescence image and (B) TEM image of the Golgi after targeting by the L-CQDs[35]
Fig. 7 A schematic for the evaluation of chiral CQDs and the tuning of the laccase activity[64]
Fig. 8 Cryo-TEM images of 25 mM Aβ42 samples after 24 h incubation in buffer (A), in buffer + 0.2 mg·mL-1 D-CQDs (B), in the presence of 0.2 mg·mL-1 L-CQDs (C and D); Secondary structures of 25 mM Aβ42 were recorded at t=0 (E) and 24 h (F) by CD spectroscopy in the absence or presence of D-/L-CQDs (each at a concentration of 0.2 mg·mL-1) respectively[67]
Fig. 9 Morphology of PrP (106-126) fibrils in the presence of enantiomeric L-/D-CQDs. (A~C) AFM images (recorded in wet conditions) of PrP (106-126) deposited upon a silicon wafer coated with a DMPC:DMPG lipid bilayer (1∶1 mole ratio) (A) in the absence of CQDs, (B) in the presence of L- CQDs, and (C) in the presence of D- CQDs[68]
Fig. 10 Digital photograph of mung bean grown in L-/D-CQDs aqueous solution with concentrations of 0, 10, 50, 100, 500 and 1000 μg·mL-1, respectively (from left to right) after incubation for 5 days with natural lighting[66]
[1]
Milton F P , Govan J , Mukhina M V , Gun’ko Y K . Nanoscale. Horiz, 2016,1:14.
[2]
Moloney M P , Gun’ko Y K , Kelly J M. Chem. Commun., 2007: 3900.
[3]
You Y , Zhang L , Luo S . Chem. Sci., 2017,8:621.
[4]
Wei W L , Qu K G , Ren J S , Qu X G. Chem. Sci., 2011,2:2050.
[5]
Das S K , Xu S X , Ben T , Qiu S L. Angew. Chem. Int. Edit., 2018,57:8629.
[6]
Bergantini A , Abplanalp M J , Pokhilko P , Krylov A I , Shingledecker C N , Herbst E , Kaiser R I. Astrophys. J., 2018,860:108.
[7]
de Jong J J D, Lucas L N , Kellogg R M , van Esch J H , Feringa B L . Science., 2004,304:278.
[8]
Cireasa R , Boguslavskiy A E , Pons B , Wong M C H , Descamps D , Petit S , Ruf H , Thiré N , Ferré A , Suarez J . Nat. Physics., 2015,11:654.
[9]
Wang X C , Wang Y , Yang H Y , Fang H X , Chen R X , Sun Y B , Zheng N F , Tan K , Lu X , Tian Z Q. Nat. Commun., 2016,7:12469.
[10]
Li F , Li Y Y , Yang X , Han X X , Jiao Y , Wei T T , Yang D Y , Xu H P , Nie G J. Angew. Chem. Int. Edit., 2018,57:2377.
[11]
Wang Q , Jin Z W , Chen D , Bai D L , Bian H , Sun J , Zhu G , Wang G , Liu S Z. Adv. Energy. Mater., 2018,8:1800007.
[12]
Wang Y , Li X M , Song J Z , Xiao L , Zeng H B , Sun H D. Adv. Mater., 2015,27:7101.
[13]
Li X Y , Zhao Y B , Fan F J , Levina L , Liu M , Quintero-Bermudez R , Gong X W , Quan L N , Fan J , Yang Z Y , Hoogland S , Voznyy O , Lu Z H , Sargent E H. Nat. Photonics., 2018,12:159.
[14]
Veldhuis S A , Ng Y F , Ahmad R , Bruno A , Jamaludin N F , Damodaran B , Mathews N , Mhaisalkar S G. ACS. Energy. Lett., 2018,3:526. https://pubs.acs.org/doi/10.1021/acsenergylett.7b01257

doi: 10.1021/acsenergylett.7b01257
[15]
Manjceevan A , Bandara J . Electrochim. Acta, 2018,271:567.
[16]
Kita T , Matsumoto A , Yamamoto N , Yamada H .J Lightwave. Technol., 2018,36:219.
[17]
Ruan C , Zhang Y , Lu M , Ji C , Sun C , Chen X , Chen H , Colvin V L , Yu W W . Nanomaterials, 2016,6:13.
[18]
Khantaw T , Boonmee C , Tuntulani T , Ngeontae W . Talanta, 2013,115:849.
[19]
Duran G M , Plata M R , Zougagh M , Contento A M , Rios A .J Colloid. Interf. Sci., 2014,428:235. https://linkinghub.elsevier.com/retrieve/pii/S0021979714002690

doi: 10.1016/j.jcis.2014.04.050
[20]
Tedsana W , Tuntulani T , Ngeontae W . Anal. Chim. Acta, 2013,783:65.
[21]
Noipa T , Ngamdee K , Tuntulani T , Ngeontae W. Spectrochim. Acta. A., 2014,118:17.
[22]
Delgado-Pérez T , Bouchet L M , de la Guardia M , Galian Raquel E , Pérez-Prieto J . Chem-Eur. J., 2013,19:11068.
[23]
Tedsana W , Tuntulani T , Ngeontae W . Ana.l Chim. Acta., 2015,867:1.
[24]
Ngamdee K , Puangmali T , Tuntulani T , Ngeontae W. Anal. Chim. Acta., 2015,898:93.
[25]
Gao F , Ma S Y , Xiao X C , Hu Y , Zhao D , He Z K . Talanta., 2017,163:102. https://linkinghub.elsevier.com/retrieve/pii/S0039914016308402

doi: 10.1016/j.talanta.2016.10.091
[26]
Li Y Y , Zhou Y L , Wang H Y , Perrett S , Zhao Y L , Tang Z Y , Nie G J. Angew. Chem. Int. Edit., 2011,50:5860. 749acd0d-c0d2-4e45-8a06-aad0d98c10eb http://dx.doi.org/10.1002/anie.201008206

doi: 10.1002/anie.201008206
[27]
Zhao M X , Zhu B J , Yao W J , Chen D F , Wang C. Chem. Biol. Drug. Des., 2017,91:285. http://doi.wiley.com/10.1111/cbdd.2018.91.issue-1

doi: 10.1111/cbdd.2018.91.issue-1
[28]
Ng Olivia T W , Yi W , Chan H M , Cheng J , Qi X , Chan W H , Yung K K L , Li H W . Biomater. SCI-UK., 2013,1:577. 19668a48-3885-4bc3-9f34-3dbead128654 http://dx.doi.org/10.1039/c3bm60029g

doi: 10.1039/c3bm60029g
[29]
Pandey V , Pandey G , Tripathi V K , Yadav S , Mudiam M K . Luminescence., 2016,31:341.
[30]
Zhang X , Yang S , Sun L Q , Luo A Q .J Mater. Sci., 2016,51:6075.
[31]
Wang Z F , Yuan F L , Li X H , Li Y C , Zhong H Z , Fan L L , Yang S H. Adv. Mater., 2017,29:1702910.
[32]
Yuan F L , Yuan T , Sui L Z , Wang Z B , Xi Z F , Li Y C , Li X H , Fan L L , Tan Z A , Chen A , Jin M X , Yang S H. Nat. Commun., 2018,9:2249.
[33]
Liu J J , Li D W , Zhang K , Yang M X , Sun H C , Yang B . Small., 2018,14:1703919 http://doi.wiley.com/10.1002/smll.201703919

doi: 10.1002/smll.201703919
[34]
Hu L L , Sun Y , Zhou Y J , Bai L , Zhang Y L , Han M M , Huang H , Liu Y , Kang Z H. Inorg. Chem. Front., 2017,4:946.
[35]
Li R S , Gao P F , Zhang H Z , Zheng L L , Li C M , Wang J , Li Y F , Liu F , Li N, Huang C Z. Chem. Sci., 2017,8:6829.
[36]
Qiao Z A , Wang Y F , Gao Y , Li H W , Dai T Y , Liu Y L , Huo Q S. Chem. Commun., 2009,46:8812.
[37]
Tripathi K M , Sonker A K , Sonkar S K , Sarkar S . RSC. Adv., 2014,4:30100.
[38]
Rong M C , Feng Y F , Wang Y R , Chen X . Sensor. Actuat. B-Chem., 2017,245:868.
[39]
Stan C S , Albu C , Coroaba A , Popa M , Sutiman D . J. Mater. Chem C., 2015,3:789.
[40]
Tan X W , Romainor A N B , Chin S F , Ng S M. . J. Anal. Appl. Pyrol., 2014,105:157.
[41]
Deng J H , Lu Q J , Mi N X , Li H T , Liu M L , Xu M C , Tan L , Xie Q J , Zhang Y Y , Yao S Z. . Chem-Eur. J., 2014,20:4993.
[42]
Ming H , Ma Z , Liu Y , Pan K , Yu H , Wang F , Kang Z H. Dalton. T., 2012,41:9526.
[43]
Shinde D B , Pillai V K. Chem-Eur . Chem-Eur. J., 2012,18:12522.
[44]
Zhai X Y , Zhang P , Liu C J , Bai T , Li W C , Dai L M , Liu W G. Chem. Commun., 2012,48:7955. http://xlink.rsc.org/?DOI=c2cc33869f

doi: 10.1039/c2cc33869f
[45]
Jaiswal A , Ghosh S S , Chattopadhyay A . Chem. Commun., 2011,48:407.
[46]
Yi L , Ning X , Gong N Q , Hao W , Xin S , Wei G , Ling Y . Carbon., 2014,68:258.
[47]
Jiang K , Sun S , Zhang L , Lu Y , Wu A G , Cai C Z , Lin H W. Angew. Chem. Int. Edit., 2015,54:5360. http://doi.wiley.com/10.1002/anie.201501193

doi: 10.1002/anie.201501193
[48]
Yuan B , Guan S Y , Sun X M , Li X M , Zeng H B , Xie Z , Chen P , Zhou S Y. ACS. Appl. Mater. Inter., 2018,10:16005. https://pubs.acs.org/doi/10.1021/acsami.8b02379

doi: 10.1021/acsami.8b02379
[49]
Yuan F L , Wang Z B , Li X H , Li Y C , Tan Z A , Fan L Z , Yang S H. Adv. Mater., 2017,29:1604436.
[50]
De B , Karak N . RSC. Adv., 2013,3:8286.
[51]
Yang Y H , Cui J H , Zheng M T , Hu C F , Tan S Z , Xiao Y , Yang Q , Liu Y L. Chem. Commun., 2011,48:380.
[52]
Sahu S , Behera B , Maiti T K , Mohapatra S . Chem. Commun., 2012,48:8835.
[53]
Shen L M , Zhang L P , Chen M L , Chen X W , Wang J H . Carbon., 2013,55:343. https://linkinghub.elsevier.com/retrieve/pii/S000862231201041X

doi: 10.1016/j.carbon.2012.12.074
[54]
Ma W , Xu L G , de Moura A F , Wu X L , Kuang H , Xu C L , Kotov N A Chem. Rev., 2017,117:8041. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00755

doi: 10.1021/acs.chemrev.6b00755
[55]
Wang R F , Wang Y L , Feng Q L , Zhou L Y , Gong F Z , Lan Y W. Mater. Lett., 2012,66:261.
[56]
Tohgha U , Deol K K , Porter A G , Bartko S G , Choi J K , Leonard B M , Varga K , Kubelka J , Muller G , Balaz M . ACS. Nano., 2013,7:11094.
[57]
Vázquez-Nakagawa M , Rodríguez-Pérez L , Herranz M A , Martín N . Chem. Commun., 2015,52:665.
[58]
Suzuki N , Wang Y H , Elvati P , Qu Z B , Kim K , Jiang S , Baumeister E , Lee J , Yeom B , Bahng J H , Lee J , Violi A , Kotov N A . ACS. Nano.no., 2016,10:1744. https://pubs.acs.org/doi/10.1021/acsnano.5b06369

doi: 10.1021/acsnano.5b06369
[59]
Askari F , Rahdar A , Trant J F . Sensing and Bio-Sensing Research., 2019,22:100251.
[60]
Copur F , Bekar N , Zor E , Alpaydin S , Bingol H . Actuat. B-Chem., 2019,279:305.
[61]
Ostadhossein F , Vulugundam G , Misra S K , Srivastava I , Pan D . Bioconjugate. Chem., 2018,29:3913. https://pubs.acs.org/doi/10.1021/acs.bioconjchem.8b00736

doi: 10.1021/acs.bioconjchem.8b00736
[62]
Deka M J , Chowdhury D . RSC. Adv., 2017,7:53057. http://xlink.rsc.org/?DOI=C7RA10611D

doi: 10.1039/C7RA10611D
[63]
Vulugundam G , Misra S K , Ostadhossein F , Schwartz-Duval A S , Daza E A , Pan D Chem. Commun., 2016,52:7513.
[64]
Hu L L , Li H , Liu C A , Song Y X , Zhang M L , Huang H , Liu Y , Kang Z H . Nanoscale., 2018,9:40394.
[65]
Zhang Y L , Hu L L , Sun Y , Zhu C , Li R S , Liu N Y , Huang H , Liu Y , Huang C Z , Kang Z H. RSC. Adv., 2016,6:59956.
[66]
Zhang M L , Hu L L , Wang H B , Song Y X , Liu Y , Li H , Shao M W , Huang H , Kang Z H . Nanoscale., 2018,10:12734.
[67]
Malishev R , Arad E , Bhunia S K , Shaham-Niv S , Kolusheva S , Gazit E , Jelinek R . Chem. Commun., 2018,54:7762. http://xlink.rsc.org/?DOI=C8CC03235A

doi: 10.1039/C8CC03235A
[68]
Arad E , Bhunia S K , Jopp J , Kolusheva S , Rapaport H , Jelinek R . Adv. Ther., 2018,1:1800006.
[69]
Wei Y Y , Chen L , Wang J L , Liu X G , Yang Y Z , Yu S P. RSC Adv., 2019,9:3208.
[1] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[2] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[3] Chen Kailing, Zhao Yunhui*, Yuan Xiaoyan*. Chemical Modification of Silica: Method, Mechanism, and Application [J]. Progress in Chemistry, 2013, 25(01): 95-104.