中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2147-2155 Previous Articles   Next Articles

• Review •

Structural Modification Methods of 5,4′-hydroxyl-containing Flavonoid Glycoside and Aglycone Molecules

He Fang   LI Ruixia  Wu Da-cheng*   

  1. (Institute of Textile of Sichuan University, Chengdu 610065, China)
  • Received: Revised: Online: Published:
  • Contact: Wu Dacheng E-mail:wudacheng@scu.edu.cn
PDF ( 1321 ) Cited
Export

EndNote

Ris

BibTeX

Multi-hydroxyl flavonoids (glycoside and their aglycones) are known to exhibit a variety of physiochemical properties and biological activities. But they are characterized by a low bioavailability and stability in vivo plus nonspecific action in pharmacology. Owing to their importance in pharmaceutics, food and cosmetics, the purpose of this work is an overview of valuable findings concerning hemisynthesis of multi-hydroxyl flavonol (e.g. rutin, quercetin) and dihydroflavone (e.g. Naringenin, Naringin) involving three types of substitutions (Ar-O-substitution, Ar (C)-substitution and glycoside-O-substitution catalyzed by enzymes). And wherein, the comparative analysis was made on the protection approaches for phenolic hydroxyls following by particular discussion for C-substitution by applying a Mannich-type reaction (including effects of substrate, monomer and systematic pH). The results indicate that a reasonable selection of the protection methods for hydroxyl groups and bioactive groups of monomers is critical to obtain desired products combining stability and target-specific bioactivity via selective hemisynthesis. Furthermore, O-substituted reactions for multi-hydroxyl flavonols and dihydroflavone exhibit comparably stronger reactivity than C-substitution but with poor regioselectivity once substitution occurs. In addition, their reactions with long alkyl-chain monomers (C≥12) in general belong to a monosubstitution, and the resultant hydrophobic substitution products, as a class of bisurfactants, exert a broad prospect for research and application.

Contents
1 Introduction
2 Characteristics of structural modification for flavonoids
2.1 Non-protection of phenolic hydroxyls
2.2 Protection and deprotection of phenolic hydroxyls
3 O-substituted flavonoid derivatives
3.1 Mono-O-substitution
3.2 Multi-O-substitution
4 C-substituted flavonoid derivatives
4.1 Effect of reactive substrate and monomer
4.2 Effect of systematic pH
5 Flavonoid glycoside-O-substituted derivatives
6 Conclusion and prospects

CLC Number: 

[1] 延玺(Yan X), 刘会青(Liu H Q),邹永青(Zou Y Q), 任占华(Ren Z H). 有机化学(Chin. J. Org. Chem.), 2008, 28: 1534—1544
[2] Chebil L, Humeau C, Falcimaigne A, Engasser J M, Ghoul M. Process Biochem., 2006, 41: 2237—2251
[3] Es-Safi N E, Ghidouche S, Ducrot P H. Molecules, 2007, 12: 2228—2258
[4] Fragopoulou E, Nomikos T, Karantonis H C, Apostolakis C, Pliakis E, Samiotaki M, Panayotou G, Antonopoulou S. J. Agric. Food Chem., 2007, 55: 80—89
[5] Li Y, Chen X, Satake M, Oshima Y, Ohizumi Y. J. Nat. Prod., 2004, 67: 725—727
[6] Saracoglu I, Varel M, Harput U S, Nagatsu A. Phytochem., 2004, 65: 2379—2385
[7] Peng Y, Ji C, Chen Y, Huang C, Jiang Y. Synth. Commun., 2004, 34: 4325—4330
[8] Chen M Y, Lee A S. J. Org. Chem., 2002, 67: 1384—1387
[9] Han J H, Kwon Y E, Sohn J H, Ryu D H. Tetrahedron, 2010, 66: 1673—1677
[10] Ramesh C, Ravindranath N, Das B. J. Org. Chem., 2003, 68: 7101—7103
[11] Wuts P G M, Greene T W. Greenes Protective Groups in Organic Synthesis. 4th ed. Hoboken, New Jersey: John Wiley & Sons, 2006. 367—430
[12] 武钦佩(Wu Q P), 李善茂(Li S M). 保护基化学(Chemistry of protected groups). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2007. 2—12
[13] Lupascu D, Tuchilus C, Profire L. Societatea de Stiinte Farmaceutice din Romania, 2008, 56: 501—506
[14] Wang R E, Kao J L F, Hilliard C A, Pandita R K, Roti J L, Hunt C R. J. Med. Chem., 2009, 52: 1912—1921
[15] Joshi N S, Aggarwal P, Hirpara V K, Jaggi M, Singh A T, Awasthi A, Verma R. WO 2009019721, 2009
[16] Dangles O, Dufour C, Fargeix G. Royal Soc. Chem., 2000, 1215—1222
[17] Huang H, Jia Q, Ma J, Qin G, Chen Y, Xi Y, Lin L, Zhu W, Ding J, Jiang H, Liu H. Eur. J. Med. Chem., 2009, 44: 1982—1988
[18] Lee S, Lee C H, Moon S S, Kim E, Kim C T, Kim B H, Bok S H, Jeong T S. Bioorg. Med. Chem. Lett., 2003, 13: 3901—3903
[19] Lee E R, Kang Y J, Kim H J, Choi H Y, Kang G H, Kim J H K, Woo B, Jeong H S, Park Y S, Cho S G. J. Cell. Bio-chem., 2008, 4: 259—273
[20] Lee E R, Kang Y J, Choi H Y, Kang G H, Kim J H, Kim B W, Han Y S, Nah S Y, Paik H D, Park Y S, Cho S G. Biol. Pharmacol. Bull., 2007, 30: 2394—2398
[21] Kim H, Lee E, Kim J, Kim J, Lim H, Lee C H, Ahn J H, Chong Y, Lim Y. Bull. Korean Chem. Soc., 2007, 28: 1413—1415
[22] Shinho K, Ishimura Y, Nagato N. JP 1988139136, 1989
[23] Molnar J, Foldeak S, Domonkos S, Schneider B, Forczek E, Beladi I. Sejtosztodas Farmakologiaja, 1979, 8: 55—65
[24] Liu Y F. CN 1837228, 2006
[25] Liu Y F. CN 1837227, 2006
[26] 王向军 (Wang X J). 浙江大学博士学位论文 (Doctoral Dissertation of Zhejiang University), 2006
[27] Liu Y F, Bi Y Y, Liu Y H. CN 1884274, 2006
[28] Liu Y F, Du H, Chen Y Q, Wang R. CN 884275, 2006
[29] 佘戟(She J), 莫丽儿(Mo L E), 康铁邦(Kang T B), 宋芝娟(Song Z J), 梁念慈(Liang N C). 中国药物化学杂志(Chin. J. Med. Chem.), 1998, 8: 287—289
[30] Xie J, Chen R Y, Liu Y J, Liu C, Liu X J, Wang D L, Wang R T, Wang Y X. CN 1824631, 2006
[31] De Keukeleire D, Roelens F, Dhooge W. WO 2006-BE121, 2007
[32] Tokalov V S, Henker Y, Schwab P, Peter M, Herwig O G. Pharmacol., 2004, 71: 46—56
[33] Wilhelm H, Wessjohann L A, Biendl M. WO 2006099914-A1
[34] Klosa J. J. für Praktische Chemie, 1967, 35: 319—325
[35] Klosa J, Voigt H. DE 19610224, 1967
[36] Emanoil G, Iosif S, Traian B, Mihai L, Iulia V. RO 62021-A2, 1977
[37] Chen L, Hu T S, Zhu J, Wu H M, Yao Z J. Synlett, 2006, 8: 1225—1229
[38] Bouwstra J B, Toda Y. EP 1273308-A1, 2003
[39] Tyukavkina N A, Kalabin G A, Kononova V V, Kushnarev D F. Chem. Heterocycl. Compd., 1978, 14: 609—612
[40] 孙逊(Sun X), 胡昌奇(Hu C Q), 黄晓东(Huang X D), 董纪昌(Dong J C). 有机化学(Chin. J. Org. Chem.), 2003, 23: 81—85
[41] Rhein-Pharma Arzneimittel (RHEI-C). BE663476-A, 1965
[42] Kontogianni A, Skouridou V, Sereti V, Stamatis H, Kolisis F N. J. Mol. Catal. B-Enzym., 2003, 21: 59—62
[43] Mellou F, Loutrari H, Stamatis H, Roussos C, Kolisis F N. Process Biochem., 2006, 41: 2029—2034
[44] Ardhaoui M, Falcimaigne A, Ognier S, Engasser J M, Moussou P, Pauly G, Ghoul M. J. Biotechnol., 2004, 110: 265—271
[45] Duan Y, Du Z L, Yao Y Y, Li R X, Wu D C. J. Agric. Food Chem., 2006, 54: 6219—6225
[46] Chebil L, Anthoni J, Humeau C, Gerardin C, Engasser J M, Ghoul M. J. Agric. Food Chem., 2007, 55: 9496—9502

[1] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[2] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[3] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[4] Ma Jingjun1 Li Ning1,2 Wu Qiuhua1 Zhou Xin1 Zang Xiaohuan1 Wang Chun1**. Organocatalytic Asymmetric Mannich Reaction [J]. Progress in Chemistry, 2008, 20(01): 76-86.
[5] Zeng Fanxing,Jiang Hualiang,Yang Yushe,Chen Kaixian,Ji Ruyun**. Progress in Synthesis and Structural Modification of Huperzine A [J]. Progress in Chemistry, 2000, 12(01): 63-.