中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1674-1682 Previous Articles   Next Articles

Special Issue: 计算化学

• Review •

Computational Peptidology

Ren Yanrong1, Tian Feifei2, Zhou Peng3   

  1. 1. Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China;
    2. School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    3. Center of Bioinformatics, Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Received: Revised: Online: Published:
PDF ( 883 ) Cited
Export

EndNote

Ris

BibTeX

Peptide is traditionally recognized as an important kind of biologically active substance, which involves in various physiological processes associated with the growth and development of organism. In recent years, however, since it was found that peptide plays a central role in cell signaling and could be exploited as therapeutic drugs targeting protein-protein interaction networks, researchers have redirected their interest to peptide-related topics. In particular, rapidly increasing efforts have been addressed on the use of computational and theoretical methods to investigate the physicochemical properties and biological implications underlying peptide recognition and interaction with protein. Here, we engage the theme “computational peptidology” to cover the field where the methods, strategies and protocols of computational chemistry and bioinformatics are employed to study peptides and peptide mimics. A systematic discussion is also addressed on the database configuration, function inference, molecular docking, dynamics simulation, structure analysis, design and modification, and systems biology of peptides. Through this perspective, we lay our emphasis on protein-peptide recognition and binding which are the basis of peptide-mediated protein interactions and peptidic drug discovery. We also rise the potential applications of computational peptidology in exploring and designing new peptide-based nanomaterials and biological surfactants. Contents 1 Introduction
2 The branches of computational peptidology
2.1 Peptide database
2.2 Peptide function prediction
2.3 Peptide docking
2.4 Peptide dynamics simulation
2.5 Peptide structure analysis
2.6 Peptide design and modification
2.7 Peptide systems biology
3 Conclusions and outlook

CLC Number: 

[1] Neduva V, Russell R B. Curr. Opin. Biotechnol., 2006, 17: 465-471
[2] Carter J M, Loomis-Price L. B Cell Epitope Mapping Using Synthetic Peptides. Curr. Protoc. Immunol., 2004, Chapter 9: Unit 9.4
[3] Lucchese G, Stufano A, Trost B, Kusalik A, Kanduc D. Amino Acids, 2007, 33: 703-707
[4] Dyson H J, Wright P E. Nat. Rev. Mol. Cell Biol., 2005, 6: 197-208
[5] Vanhee P, van der Sloot A M, Verschueren E, Serrano L, Rousseau F, Schymkowitz J. Trends Biotech., 2011, 29: 231-239
[6] Moellering R E, Cornejo M, Davis T N, Bianco C D, Aster J C, Blacklow S C, Kung A L, Gilliland D G, Verdine G L, Bradner J E. Nature, 2009, 462: 182-188
[7] 黄仁亮(Huang R L), 齐崴(Qi W), 苏荣欣(Su R X), 何志敏(He Z M). 化学进展(Progress in Chemistry), 2010, 22: 2328-2337
[8] Koutsopoulos S, Kaiser L, Eriksson H M, Zhang S. Chem. Soc. Rev., 2012, 41: 1721-1728
[9] Dover J E, Hwang G M, Mullen E H, Prorok B C, Suh S J. J. Microbiol. Methods, 2009, 78: 10-19
[10] Zhou P, Tian F, Chen X, Shang Z. Biopolymers, 2008, 90: 792-802
[11] Zhou P, Tian F, Li Z. Chem. Biol. Drug Des., 2007, 69: 56-67
[12] Zhou P, Chen X, Wu Y, Shang Z. Amino Acids, 2010, 38: 199-212
[13] Zhou P, Huang J, Tian F. Curr. Med. Chem., 2012, 19: 226-238
[14] Zhou P, Chen X, Shang Z. J. Comput. Aided Mol. Des., 2009, 23: 129-141
[15] Tian F, Lv Y, Zhou P, Yang L. J. Comput. Aided Mol. Des., 2011, 25: 947-958
[16] Tian F, Lv F, Luo X, Pan Y. Amino Acids, 2011, 40: 493-503
[17] Tian F, Yang L, Lv F, Yang Q, Zhou P. Amino Acids, 2009, 36: 535-554
[18] Tian F, Yang L, Lv F, Zhou P. Anal. Chim. Acta, 2009, 644: 10-16
[19] Tian F, Zhou P, Li Z. J. Mol. Struct., 2007, 830: 106-115
[20] Tian F, Zhou P, Lv F, Song R, Li Z. J. Pept. Sci., 2007, 13: 549-566
[21] Ren Y, Chen X, Feng M, Wang Q, Zhou P. Protein Pept. Lett., 2011, 18: 670-678
[22] Lonsdale R, Ranaghan K E, Mulholland A J. Chem. Commun., 2010, 46: 2354-2372
[23] Peters B, Sidney J, Bourne P, Bui H H, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, Nemazee D, Ponomarenko J V, Sathiamurthy M, Schoenberger S, Stewart S, Surko P, Way S, Wilson S, Sette A. PLoS Biol., 2005, 3: art.no. e91
[24] Wang Z, Wang G. Nucleic Acids Res., 2004, 32: D590-D592
[25] Iwaniak A, Dziuba J, Niklewicz M. Acta Alimentaria, 2005, 34: 417-425
[26] Shtatland T, Guettler D, Kossodo M, Pivovarov M, Weissleder R. BMC Bioinformatics, 2007, 8: art. no. 280
[27] Shi L, Zhang Q, Rui W, Lu M, Jing X, Shang T, Tang J. Regul. Pept., 2004, 120: 1-3
[28] Valuev V P, Afonnikov D A, Ponomarenko M P, Milanesi L, Kolchanov N A. Nucleic Acids Res., 2002, 30: 200-202
[29] Ceol A, Chatr-Aryamontri A, Santonico E, Sacco R, Castagnoli L, Cesareni G. Nucleic Acids Res., 2007, 35: D557-D560
[30] Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X, Dai P, Lin H, Guo F B, Rao N. Nucleic Acids Res., 2012, 40: D271-D277
[31] Aaslanda R, Abrams C, Ampe C, Balld L J, Bedforde M T, Cesarenif C, Gimonag M, Hurleyh J H, Jarchaui T, Lehtoj V P, Lemmonk M A, Linding R, Mayerm B J, Nagain M, Sudoln M, Walteri U, Windero S J. FEBS Lett., 2002, 513: 141-144
[32] Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin D M, Ausiello G, Brannetti B, Costantini A, Ferrè F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Küster B, Helmer-Citterich M, Hunter W N, Aasland R, Gibson T J. Nucleic Acids Res., 2003, 31: 3625-3630
[33] Mi T, Merlin J C, Deverasetty S, Gryk M R, Bill T J, Brooks A W, Lee L Y, Rathnayake V, Ross C A, Sargeant D P, Strong C L, Watts P, Rajasekaran S, Schiller M R. Nucleic Acids Res., 2012, 40: D252-D260
[34] Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche B, De Castro E, Lachaize C, Langendijk-Genevaux P S, Sigrist C J A. Nucleic Acids Res., 2007, 36: D245-D249
[35] Stein A, Russell R B, Aloy P. Nucleic Acids Res., 2005, 33: D413-D417
[36] Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L, Schymkowitz J, Rousseau F. Nucleic Acids Res., 2010, 38: D545-D551
[37] Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E. Nucleic Acids Res., 2000, 28: 235-242
[38] Davey N E, Haslam N J, Shields D C, Edwards R J. Nucleic Acids Res., 2011, 39: W56-W60
[39] Baczek T. Curr. Pharm. Anal., 2005, 1: 31-40
[40] 丁俊杰(Ding J J), 丁晓琴(Ding X Q), 赵立峰(Zhao L F), 陈冀胜(Chen J S). 化学进展(Progress in Chemistry), 2005, 15: 130-136
[41] Hellberg S, Sjostrom M, Skagerberg B, Wold S. J. Med. Chem., 1987, 30: 1126-1135
[42] Collantes E R, Dunn W J. J. Med. Chem., 1995, 38: 2705-2713
[43] Mei H, Liao Z H, Zhou Y, Li S Z. Biopolymers, 2005,80: 775-786
[44] Wold S, Jonsson J, Sjörström M, Sandberg M, Rännar S. Anal. Chim. Acta, 1993, 277: 239-253
[45] Schueler-Furman O, Altuvia Y, Sette A, Margalit H. Protein Sci., 2000, 9: 1838-1846
[46] Madden D R. Annu. Rev. Immunol., 1995, 13: 587-622
[47] Hou T, McLaughlin W, Lu B, Chen K, Wang W. J. Proteome Res., 2006, 5: 32-43
[48] Hou T, Zhang W, Case D A, Wang W. J. Mol. Biol., 2008, 376: 1201-1214
[49] Hou T, Li N, Li Y, Wang W. J. Proteome Res., 2012, 11: 2982-2995
[50] Hou T, Xu Z, Zhang W, McLaughlin W A, Case D A, Xu Y, Wang W. Mol. Cell. Proteomics, 2009, 8: 639-649
[51] Xu Z, Hou T, Li N, Xu Y, Wang W. Mol. Cell. Proteomics, 2012, 11(1): doi: 10.1074/mcp.O111.010389
[52] Woo H, Roux B.Proc. Natl Acad. Sci. USA, 2005, 102: 6825-6830
[53] Ahmad S, Kono H, Arauzo-Bravo M J, Sarai A. Nucleic Acids Res., 2006, 4: W124-W127
[54] London N, Movshovitz-Attias D, Schueler-Furman O. Structure, 2010, 18: 188-199
[55] Killian B J, Kravitz J Y, Somani S, Dasgupta P, Pang Y P, Gilson M K. J. Mol. Biol., 2009, 389: 315-335
[56] Bursulaya B D, Totrov M, Abagyan R, Brooks C L. J. Comput. Aided Mol. Des., 2003, 17: 755-763
[57] Kellenberger E, Rodrigo J, Muller P, Rognan D. Proteins, 2004, 57: 225-242
[58] Chang C A, Chen W, Gilson M K. Proc. Natl Acad. Sci. USA, 2007, 104: 1534-1539
[59] Hou T, Wang J, Chen L, Xu X. Protein Engin., 1999, 12: 639-648
[60] Liu Z, Dominy B N, Shakhnovich E I. J. Am. Chem. Soc., 2004, 126: 8515-8528
[61] Niv M Y, Weinstein H. J. Am. Chem. Soc., 2005, 127: 14072-14079
[62] Antes I. Proteins, 2010, 78: 1084-1104
[63] London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O. Nucleic Acids Res., 2011, 39: W249-W253
[64] Raveh B, London N, Schueler-Furman O. Proteins, 2010, 78: 2029-2040
[65] Donsky E, Wolfson H J. Bioinformatics, 2011, 27: 2836-2842
[66] Ahmad M, Gu W, Helms V. Angew. Chem. Int. Ed., 2008, 47: 7626-7630
[67] Staneva I, Wallin S. PLoS Comput. Biol., 2011, 7:art.no.e1002131
[68] Fagerberg T, Cerottini J C, Michielin O. J. Mol. Biol., 2006, 356: 521-546
[69] Petsalaki E, Stark A, García-Urdiales E, Russell R B. PLoS Comput. Biol., 2009, 5:art.no. e1000335
[70] Daura X. Theor. Chem. Acc., 2006, 116: 297-306
[71] Voelz V A, Shell M S, Dill K A. PLoS Comput. Biol., 2009, 5:art.no. e1000281
[72] Shaw D E, Maragakis P, Lindorff-Larsen K, Piana S, Dror R O, Eastwood M P, Bank J A, Jumper J M, Salmon J K, Shan Y, Wriggers W. Science, 2010, 330: 341-346
[73] Ganoth A, Friedman R, Nachliel E, Gutman M. Biophys. J., 2006, 91: 2436-2450
[74] Freites J A, Choi Y, Tobias D J. Biophys. J., 2003, 84: 2169-2180
[75] Slocik J M, Naik R R. Chem. Soc. Rev., 2010, 39: 3454-3463
[76] Lama D, Sankararamakrishnan R. J. Comput. Aided Mol. Des., 2011, 25: 413-426
[77] Dagliyan O, Proctor E A, D’Auria K M, Ding F, Dokholyan N V. Structure, 2011, 19: 1837-1845
[78] Stein A, Aloy P. PLoS Comput. Biol., 2010, 6:art.no. e1000789
[79] Vanhee P, Stricher F, Baeten L, Verschueren E, Lenaerts T, Serrano L, Rousseau F, Schymkowitz J. Structure, 2009, 17: 1128-1136
[80] Jochim A L, Arora P S. Mol. BioSyst., 2009, 5: 924-926
[81] Jochim A L, Arora P S. ACS Chem. Biol., 2010, 5: 919-923
[82] London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O. Proteins, 2010, 78: 3140-3149
[83] Stein A, Aloy P. PLoS ONE, 2008, 3:art.no.e2524
[84] King C A, Bradley P. Proteins, 2010, 78: 3437-3449
[85] Unal E B, Gursoy A, Erman B. PLoS ONE, 2010, 5:art.no. e10926
[86] Zhou P, Tian F, Shang Z. Chem. Biol. Drug Des., 2008, 72: 525-532
[87] Edwards R J, Moran N, Devocelle M, Kiernan A, Meade G, Signac W, Foy M, Park S D, Dunne E, Kenny D, Shields D C. Nat. Chem. Biol., 2007, 3: 108-112
[88] Shemesh R, Toporik A, Levine Z, Hecht I, Rotman G, Wool A, Dahary D, Gofer E, Kliger Y, Soffer M A, Rosenberg A, Eshel D, Cohen Y. J. Biol. Chem., 2008, 283: 34643-34649
[89] Walshe V A, Hattotuwagama C K, Doytchinova I A, Wong M, Macdonald I K, Mulder A, Claas F H, Pellegrino P, Turner J, Williams I, Turnbull E L, Borrow P, Flower D R. PLoS ONE, 2009, 4:art.no. e8095
[90] Kliger Y, Levy O, Oren A, Ashkenazy H, Tiran Z, Novik A, Rosenberg A, Amir A, Wool A, Toporik A, Schreiber E, Eshel D, Levine Z, Cohen Y, Nold-Petry C, Dinarello C A, Borukhov I. Proc. Natl. Acad. Sci. USA, 2009, 106: 13797-13801
[91] Yin H, Slusky J S, Berger B W, Walters R S, Vilaire G, Litvinov R I, Lear J D, Caputo G A, Bennett J S, DeGrado W F. Science, 2007, 315: 1817-1822
[92] Cui W, Wei Z, Chen Q, Cheng Y, Geng L, Zhang J, Chen J, Hou T, Ji M. J. Chem. Inf. Model., 2010, 50: 380-387
[93] Sood V D, Baker D. J. Mol. Biol., 2006, 357: 917-927
[94] Grigoryan G, Reinke A W, Keating A E. Nature, 2009, 458: 859-865
[95] Boonen K, Creemers J W, Schoofs L. Bioassays, 2009, 31: 300-314
[96] Smith G P, Petrenko V A. Chem. Rev., 1997, 97: 391-410
[97] Hilpert K, Winkler D F H, Hancock R E W. Nat. Protocols, 2007, 2: 1333-1349
[98] Landgraf C, Panni S, Montecchi-Palazzi L, Castagnoli L, Schneider-Mergener J, Volkmer-Engert R, Cesareni G. PLoS Biol., 2004, 2:art.no. e14
[99] Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson T J, Lewis J, Serrano L, Russell R B. PLoS Biol., 2005, 3:art.no e405
[100] Hou T, Chen K, McLaughlin W A, Lu B, Wang W. PLoS Comput. Biol., 2006, 2:art.no. e1
[101] Spaller M R. ACS Chem. Biol., 2006, 1: 207-210
[102] Gfeller D, Butty F, Wierzbicka M, Verschueren E, Vanhee P, Huang H, Ernst A, Dar N, Stagljar I, Serrano L, Sidhu S S, Bader G D, Kim P M. Mol. Syst. Biol., 2011, 7: art.no.484
[103] Stiffler M A, Chen J R, Grantcharova V P, Lei Y, Fuchs D, Allen J E, Zaslavskaia L A, MacBeath G. Science, 2007, 317: 364-369
[104] Boonen K, Landuyt B, Baggerman G, Husson S J, Huybrechts J, Schoofs L. J. Sep. Sci., 2008, 31: 427-445
[105] Menschaert G, Vandekerckhove T T, Baggerman G, Schoofs L, Luyten W, Van Criekinge W. J. Proteome Res., 2010, 9: 2051-2061
[106] Kahvejian A, Quackenbush J, Thompson J F. Nat. Biotech., 2008, 26: 1125-1133
[107] Jorgensen R A. Frontiers in Genetics, 2011, 2: art. no. 68, doi: 10.3389/fgene. 2011.00068
[1] Tong Wang, Wenjiao Zhao, Liangchun Li, Renlin Zheng, Dequn Sun. Synthesis of Dehydroamino Acids and Their Applications in the Drug Research and Development [J]. Progress in Chemistry, 2020, 32(1): 55-71.
[2] Zhan Peng, Wang Xueshun, Liu Xinyong. Contemporary Molecular Targeted Drug in the Context of “Precision Medicine”: An Attempting Discussion of “Precision Drug Design” [J]. Progress in Chemistry, 2016, 28(9): 1363-1386.
[3] Yuan Shuo, Sun Dequn. The Conformational Restriction of β-Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2016, 28(7): 1084-1098.
[4] Hou hui, Sun Dequn. Conformational Restriction of Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2015, 27(9): 1260-1274.
[5] . "Click Chemistry" and Its Growing Applications in Biomedical Field [J]. Progress in Chemistry, 2010, 22(0203): 417-426.
[6] 刘幸海 XingHai Liu. Progress in KARI and its Inhibitors [J]. Progress in Chemistry, 2008, 20(11): 1788-1797.
[7] Han Chunyan|Li Yan|Liu Gang**

. Drug-likeness: Predication and Practice [J]. Progress in Chemistry, 2008, 20(09): 1335-1344.
[8] Zhang Na1,Jiang Yongjun2**|Yu Qingsen1,Zou Jianwei2. Studies of Glycogen Synthase Kinase-3 Inhibitors [J]. Progress in Chemistry, 2007, 19(04): 614-623.
[9] Guizhao Liang1,Hu Mei1,Yuan Zhou1,Zhiliang Li 1,2*. Modeling Techniques of Multidimensional Quantitative Structure-Activity Relationship in Computer-Aided Drug Design [J]. Progress in Chemistry, 2006, 18(01): 120-130.
[10] Hou Tingjun,Xu Xiaojie*. Applications of Genetic Algorithms to Computer-Aided Drug Design [J]. Progress in Chemistry, 2004, 16(01): 35-.
[11] Zhao Weiguang,Li Zhengming**,Wang Baolei,Wang Jianguo. High-Throughout Protein Crystallization and Its Application to Drug Design* [J]. Progress in Chemistry, 2004, 16(01): 105-.
[12] Wang Baolei,Li Zhengming*,Cang Hongjun. Influence of Genomics on Structure-based Drug Design [J]. Progress in Chemistry, 2003, 15(06): 505-.
[13] Zhou Jiaju,Lei Jing,Xie Guirong,Li Renli. Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2000, 12(03): 332-.
[14] Xu Jun. Chemical Diversity Exploration and Combinatorial Chemistry in Drug Discovery [J]. Progress in Chemistry, 1999, 11(03): 286-.
[15] Jiang Hualiang,Hu Zengjian,Chen Jianzhong,Gu Jiande,Zhu Weiliang,Chen Kaixian,Ji Ruyun. Computer Modeling for Interaction of Ligands and Receptors and Their Applications in Drug Design [J]. Progress in Chemistry, 1998, 10(04): 427-.
Viewed
Full text


Abstract

Computational Peptidology