English
新闻公告
More
化学进展 1998, Vol. 10 Issue (03): 237-   后一篇

• 综述与评论 •

人工控制液相金属纳米粒子的组装

朱清时;林铭章   

  1. 中国科学技术大学
  • 收稿日期:1997-08-01 修回日期:1997-12-01 出版日期:1998-09-24 发布日期:1998-09-24

Artificial Controlled Assembly of Metallic Nanoaggregates in Liquid Phase

Lin Mingzhang;Zhu Qingshi   

  1. Laboratory for BondSelective Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:1997-08-01 Revised:1997-12-01 Online:1998-09-24 Published:1998-09-24

液相中金属纳米粒子或团簇粒子的研究是现代化学和物理学的一个重要方面, 是对气相和真空中纳米粒子研究的补充。由于受到介质的强烈影响, 体系更为复杂, 然而却有了人工控制纳米粒子的大小和结构的可能性。本文介绍利用电离辐射或光化学方法还原金属离子在液相中制备金属纳米粒子, 通过调节介质的组成及介质的性质(如pH 值等) ,可以有效地控制其颗粒度大小, 并有可能最终控制纳米粒子的结构。该方法还具有颗粒度分布均匀、无须添加化学还原剂以及可以制备纳米合金粒子等优点。利用脉冲式辐照(脉冲辐解技术) 可以对液相中金属纳米粒子形成的化学反应机理进行深入的基础研究。

The study of metallic nanoaggregates and or clusters in liquid phase is one of the most important branches in modern chemistry and physics, and it is a complement to the study of nanoaggregates in gas phase or vacuum. Strongly in teracting with the medium , the system is very complicated; however, it is possible to control the size and structure of the particles. The study in this field is much more challenging and has potential applications. The ionizing irradiation induced or photochemical induced reduction of metallic ions has permitted us to prepare them etallic nanoaggregates in liquid phase. By optimizing the compositions and the properties of them edium (e. g. pH) , the size and size distribution of the particles have been under control, and the structure of the particles can also be controlled in the near future. Th is method has also other advantages such as narrow size distribution of particles, no chemical reductants and the possibility to prepare bimetallic nanoaggregates. Moreover, it is possible to do the fundamental studies on the formation of the metallic nanoaggregates by pulse irradiation, namely by pulse radiolysis.

中图分类号: 

()

[1 ] Yamada T , Yamamoto Y, Harrison W A , J. Vac. Sci. Technol. B , 1996, 14 (2) , 1243.
[2 ] Chernov A A , Modern Crystallography ? : Crystal Growth, Springer Seriesin Solid-State Sciences,Springer2Verlag, Berlin, 1984.
[3 ] Weiser H B, Colloid Chemistry , JohnWiley & Sons, New York, 1939.
[4 ] Maurin G,in Growthand Properties of Metal Clusters, Applications to Catalysis and the Photographic Process (ed. Bourdon J ) , Elsevier, Amsterdam , 1980, 101.
[5 ] Gillet M , J. Microsc. Spectrosc. Electron. , 1986, 11, 449.
[6 ] Somorjai G A , Adv. Catal. , 1977, 26, 1.
[7 ] Structural, Electronic Catalytic Propertiesof Metals (eds. Che M , Naccache C) , J. Chim. Phys.PCB , 1981, 78, 857.
[8 ] Contribution of Clustersto Materials Science and Technology (eds. Davenas J , Rabette P M ) , NA TO A S Iseries 104, 1984.
[9 ] Moisar E, Granzer F, Photogr. Sci. Eng. , 1982, 26, 1.
[10 ] Stave M S, Sanders D E, Raeker T J , DePristo A E, J. Chem. Phys. , 1990, 93, 4413.
[11 ] Huang D H , Yamamoto Y, Jpn. Appl. Phys. , 1996, 34, 3373.
[12 ] Huang D H, Uchida H, Aono M , Jpn. Appl. Phys. , 1991, 31, 4501.
[13 ] Huang D H, Yamamoto Y, Surf . Rev. Lett. , 1996, 3, 1463.
[14 ] Ferradini C, Pucheault J , Biologiede L ’actiondes Rayonnements Ionisants, Masson, Paris, 1983.
[15 ] Buxton G V , Greenstock C L , Helman W P, RossA B, J. Phys. Chem. Ref . Data, 1988, 17, 513.
[16 ] Belloni J , Amblard J , Marignier J L , Mostafavi M , Clusters of Atomsand Molecules ê (ed.Haberland H) , Chemical Physics, 1994, 56, 291.
[17 ] Mostafavi M , Keghouche N , Delcourt M O , Belloni J , Chem. Phys. Lett. , 1990, 167, 193.
[18 ] Mostafavi M , Keghouche N , Delcourt M O , Chem. Phys. Lett. , 1990, 169, 81.
[19 ] Marignier J L , Belloni J , Delcourt M O , Chevalier J P, Nature, 1985, 317, 344.
[20 ] Marignier J L , Thèse ès Sciences, Orsay, 1987.
[21 ] Lin M Z, Thèsede 3emecycle, Orsay, 1996.
[22 ] Henglein A , Mulvaney P, Linnert T , Holzwarth A , J. Phys. Chem. , 1992, 96, 2411.
[23 ] Michaelis M , Henglein A , J. Phys. Chem. , 1994, 98, 6212.
[24 ] Mulvaney P, Giersig M , Henglein A , J. Phys. Chem. , 1992, 96, 10419.
[25 ] Mulvaney P, Giersig M , Henglein A , J. Phys. Chem. , 1993, 97, 7061.
[26 ] Toshima N , Harada M , Yonezawa T , Kushihashi K, Asakura K, J. Phys. Chem. , 1991, 95, 7448.
[27 ] Toshima N , Harada M , Yonezawa T , Kushihashi K, Asakura K, J. Phys. Chem. , 1992, 96, 9927.
[28 ] Marignier J L , Belloni J , J. Chim. Phys. PCB , 1988, 85, 21.
[29 ] Remita S, Orts J M , Feliu J M , Mostafavi M , Delcourt M O , Chem. Phys. Lett. , 1994, 218, 115.
[30 ] Amblard J , Platzer O , Ridard J , Belloni J , J. Phys. Chem. , 1992, 96, 2341.
[31 ] Platzer O , Thèsede 3emecycle, Orsay, 1989.
[32 ] Schmid G, Chem. Rev. , 1992, 92, 1709.

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[3] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[4] 武卫杰, 冷远逵, 沈梦飞, 李万万. 基于功能纳米材料的液相生物芯片检测技术[J]. 化学进展, 2019, 31(2/3): 283-299.
[5] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[6] 杜远超, 华政, 梁风, 李永梅, 戴永年, 姚耀春. 液相法合成磷酸铁锂正极材料[J]. 化学进展, 2017, 29(1): 137-148.
[7] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[8] 钟大根, 刘宗华, 左琴华, 薛巍. 高分子纳米材料与血浆蛋白的相互作用[J]. 化学进展, 2014, 26(04): 638-646.
[9] 高友志, 王猛, 颜范勇, 陈莉. 水凝胶/金属纳米粒子复合物的制备及其在催化反应中的应用[J]. 化学进展, 2014, 26(04): 626-637.
[10] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
[11] 谢生明, 袁黎明. 金属-有机骨架材料用于色谱固定相[J]. 化学进展, 2013, 25(10): 1763-1770.
[12] 吴亮, 沐春磊, 张群林*, 吕忱, 张晓悦. 纳米粒子参与的鲁米诺化学发光及其分析应用[J]. 化学进展, 2013, 25(07): 1187-1197.
[13] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[14] 黄美荣, 丁永波, 施凤英, 李新贵. 基于高选择性氟液相传感膜的离子传感器[J]. 化学进展, 2012, 24(11): 2224-2233.
[15] 陶凯, 王继乾*, 夏道宏, 徐海, 吕建仁, 山红红. 多肽在贵金属纳米粒子制备中的应用[J]. 化学进展, 2012, 24(07): 1294-1308.