English
新闻公告
More
化学进展 1998, Vol. 10 Issue (03): 246- 前一篇   后一篇

• 综述与评论 •

无机材料的仿生合成

冯庆玲;王浩;崔福斋;毛传斌;李恒德   

  1. 清华大学材料科学与工程系
  • 收稿日期:1997-09-01 出版日期:1998-09-24 发布日期:1998-09-24
  • 通讯作者: 毛传斌

Biomimetic Synthesis of Inorganic Materials

Mao Chuanbin;Li Hengde;Cui Fuzhai;Feng Qingling;Wang Hao   

  1. Department of Materials Science & Engineering,Tsinghua University, Beijing 100084, China
  • Received:1997-09-01 Online:1998-09-24 Published:1998-09-24
  • Contact: Mao Chuanbin

生物矿化重要的特征之一是细胞分泌的有机基质调制无机矿物的成核和生长, 形成具有特殊组装方式和多级结构特点的生物矿化材料(如骨、牙和贝壳)。仿生合成就是将生物矿化的机理引入无机材料合成, 以有机物的组装体为模板, 去控制无机物的形成,制备具有独特显微结构特点的无机材料, 使材料具有优异的物理和化学性能。仿生合成已成为无机材料化学的研究前沿。本文综述了无机材料仿生合成的发展现状。

The most important aspects in biomineralization are the controlled nucleation and growth of inorganicm inerals from aqueous solutions under the mediation of organic matrix secreted by the cell, and the form ation of the biomineralized materials (bone, teeth, shell etc. ) with the hierarchical structure and special assembly. Biomimetic synthesis in spired by the biomineralization involves the controlled formation of inorganic materials with organic assembly as template, and the production of inorganic materials with special microstructure and excellent physical and chemical properties. Biomimetic synthesis has now become apromising field in inorganic materials chemistry research. The research status of biomimetic synthesis of inorganic materials is reviewed.

中图分类号: 

()

[1 ] ann S, J. Mater. Chem. , 1995, 5, 935—946.
[2 ] Heuer A H, Fink D J , Laraia V J , Arias J L , Calvert P D, Kendall K, Messing G L , Blackwell J ,Rieke P C, Thompson D H, Wheeler A P, Veis A , Caplan A I, Science, 1992, 255, 1098.
[3 ] eldrum F C, Heywood B R, Mann S, Science, 1992, 257, 522—523.
[4 ] endelson N H, Science, 1992, 258, 1633—1636.
[5 ] Fritz M , Belcher A M , Radmacher M , Walters D A , Hansma P K, Stucky G D, Morse D E, Mann S, Nature, 1994, 371, 49- 51.
[6 ] ann S, Biomimetic Materials Chemistry , VCH Publishers, New York, 1996.
[7 ] Fendler J H, Chem. Rev. , 1987, 87, 877—899.
[8 ] Fendler J H, Meldrum F C, Adv. Mater. , 1995, 7, 607—632.
[9 ] Bunker B C, Rieke P C, Tarasevich B J , Campbell A H, Fryxell G E, Graft G L , Song L , Liu J ,Virden J W , McVay G L , Science, 1994, 264, 48—55.
[10 ] Bell M , Yang H C, Mallouk T E, Materials Chemistry : An Emerging Discipline (eds. Interrante L V et al. ) , American Chemical Society, Washington D C, 1995, 211—230.
[11 ] Shin H, Collins R J , De Guire M R, Heuer A H, Sukenik C N , J. Mater. Res. , 1995, 10, 692—698.
[12 ] Shin H, Collins R J , De Guire M R, Heuer A H, Sukenik C N , J. Mater. Res. , 1995, 10, 699—703.
[13 ] Tarasevich B J , Rieke P C, Liu J , Chem. Mater. , 1996, 8, 292—300.
[14 ] New Scientist, 1995, 12, 42—45.
[15 ] Kresge C T , Adv. Mater. , 1996, 2, 181.
[16 ] Mann S, Ozin G A , Nature, 1996, 382, 313—318.
[17 ] Kresge C T , Leonowicz M E, Roth W J , Vartuli J C, Beck J S, Nature, 1992, 359, 710—712.
[18 ] Raman N K, Anderson M T , Brinker C J , Chem. Mater. , 1996, 8, 1682—1701.
[19 ] Vartuli J C, Kresge C T , Roth W J , McCullen S B, Beck J S, Schmitt K D, Leonowicz M E, Lutner J D, Sheppard E W , Prepr. Am. Chem. Soc. Div. Pet. Chem. , 1995, 40, 21—25.
[20 ] Tanev P T , Pinnavaia T J , Science, 1996, 271, 1267—1269.
[21 ] Tanev P T , Pinnavaia T J , Chem. Mater. , 1996, 8, 2069—2079.
[22 ] Huo Q , Margolese H I, Stucky G D, Chem. Mater. , 1996, 8, 1147—1160.
[23 ] Grun M , Lauer I, Unger K K, Adv. Mater. , 1997, 9, 254—257.
[24 ] Schacht S, Huo Q , Voigt-Martin I G, Stucky G D, Schuth F, Science, 1996, 273, 768—771.
[25 ] Huo Q , Feng J , Schuth F, Stucky G D, Chem. Mater. , 1997, 9, 14—17.
[26 ] Khushalani D, Kuperman A , Ozin G A , Tanaka K, Garces J , Olken M M , Coombs N , Adv.Mater. , 1995, 7, 842—846.
[27 ] Yang H, Coombs N , Sokolov I, Ozin G A , Nature, 1996, 381, 589—592.
[28 ] Walsh D, Mann S, Chem. Mater. , 1996, 8, 1994—1953.
[29 ] Ozin G A , Oliver S, Adv. Mater. , 1995, 7, 943—947.
[30 ] Oliver S, Coombs N , Ozin G A , Adv. Mater. , 1995, 7, 931—935.
[31 ] Oliver S, Kuperman A , Coombs N , Lough A , Ozin G A , Nature, 1995, 378, 47—50.
[32 ] Oliver S, Ozin G A , Ozin L A , Adv. Mater. , 1995, 7, 948—951.
[33 ] Walsh D, Mann S, Nature, 1995, 377, 320—323.
[34 ] Cui F Z, Zhou L F, Cui H, Ma C L , Lu H B, Li H D, J. Crystal Growth, 1996, 169, 557—562.
[35 ] Lu H B, Ma C L , CuiH, Zhou L F, Wang R Z, Cui F Z, J. Crystal Growth, 1995, 155, 120—125.
[36 ] Ma C L , Lu H B, Wang R Z, Zhou L F, Cui F Z, Qian F, J. Crystal Growth, 1997, 173, 141—149.

[1] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[2] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[3] 潘宇, 历娜, 周润宏, 赵敏. 趋磁细菌纳米磁小体的研究与应用[J]. 化学进展, 2013, 25(10): 1781-1794.
[4] 王本, 唐睿康*. 生物矿化:无机化学和生物医学间的桥梁之一[J]. 化学进展, 2013, 25(04): 633-641.
[5] 欧阳健明*, 张广娜, 王凤新, 李君君. 草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系[J]. 化学进展, 2013, 25(04): 642-649.
[6] 刘瑞来, 刘海清*, 刘俊劭, 江慧华. 静电纺丝制备图案化无机纳米纤维[J]. 化学进展, 2012, 24(08): 1484-1496.
[7] 李文玲, 臧鹏, 李洪福, 杨世霞. 二苯乙烯类低聚物的仿生合成[J]. 化学进展, 2012, 24(04): 545-555.
[8] 刘闯, 王元贵, 耿家青, 姜忠义, 杨冬. 无机纳米粒子的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521.
[9] 吴聪孟, 王小强, 赵康, 曹美文, 徐海, 吕建仁. 原子力显微镜法研究方解石(104)面的生长及溶解[J]. 化学进展, 2011, 23(01): 107-124.
[10] 欧阳健明 杨如娥 谈金. 肾上皮细胞损伤对草酸钙形成和黏附的影响*[J]. 化学进展, 2010, 22(08): 1665-1671.
[11] 李旭琴 刘安. 无保护基法合成的启示*[J]. 化学进展, 2010, 22(01): 81-90.
[12] 赵海丽 汤正新 张庆国 尤景汉 陈庆东. 离子液体中制备无机材料[J]. 化学进展, 2009, 21(10): 2077-2083.
[13] 蔡国斌,郭晓辉,俞书宏. 聚合物控制模拟生物矿化*[J]. 化学进展, 2008, 20(0708): 1001-1014.
[14] 徐旭荣,蔡安华,刘睿,潘海华,唐睿康. 生物矿化中的无定形碳酸钙*[J]. 化学进展, 2008, 20(01): 54-59.
[15] 贺军辉,陈洪敏,张林. 无机微/纳空心球*[J]. 化学进展, 2007, 19(10): 1488-1494.
阅读次数
全文


摘要

无机材料的仿生合成