English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 140-151 DOI: 10.7536/PC130648 前一篇   后一篇

• 综述与评论 •

嵌段共聚物的临界条件液相色谱分离与表征

付超1,2, 朱雨田*2, 施德安*1   

  1. 1. 湖北大学材料科学与工程学院 武汉 430062;
    2. 中国科学院长春应用化学研究所 长春 130022
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 朱雨田,e-mail:ytzhu@ciac.ac.cn;施德安,e-mail:deanshi2012@yahoo.com E-mail:ytzhu@ciac.ac.cn;deanshi2012@yahoo.com
  • 基金资助:

    国家自然科学基金青年科研基金项目(No. 21104083);国家自然科学基金面上科研基金项目(No.51173037);吉林省科技厅科技青年科研基金项目(No. 201201007)和教育部留学回国人员科研启动基金项目资助

Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition

Fu Chao1,2, Zhu Yutian*2, Shi Dean*1   

  1. 1. Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062;
    2. Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China for Youth Science Funds (No. 21104083), the National Natural Science Foundation of China for General Program (No. 51173037), the Scientific Development Program of Jilin Province (No. 202101007) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

嵌段共聚物是由两种或两种以上不同性质的聚合物链段通过共价键连接形成的特殊聚合物。它可以结合构成嵌段的不同种类聚合物的性质,得到性能比较优越的功能性聚合物材料,因此越来越受到人们的重视。然而,嵌段共聚物的分离和表征一直都是一项颇具挑战性的工作。临界条件液相色谱(liquid chromatography at the critical condition,LCCC)作为一种新型的液相色谱分离技术,可以使嵌段共聚物中的某种嵌段处于“色谱不可见”(chromatographic invisible)状态,不会影响整个聚合物的保留时间,从而根据嵌段共聚物中其他嵌段长度来分离嵌段共聚物。本文介绍了LCCC分离法的分离原理与实现途径,较为系统地综述了LCCC分离表征嵌段共聚物的近期研究进展,并对该方法目前存在的问题及今后发展前景进行了探讨。

Block copolymer is a special type of copolymer in which two or more segments of polymers (blocks) are joined together by covalent bond. It has received more and more attention because it can combine the excellent properties from different polymers into an excellent functional polymer material. However, it is still a challenging task to separate and characterize the block copolymers. As a new type of chromatographic technique, liquid chromatography at the critical condition (LCCC) can make a block of the block copolymer "chromatographically invisible" at the critical condition of the corresponding homopolymer, so that the retention of the block copolymer is determined solely by the other block that is not under critical condition. In this review, the mechanism and approach of LCCC technique are introduced. The recently studies for LCCC analysis of block copolymer are systemically reviewed. The limitation and future development of LCCC method are also discussed.

Contents
1 Introduction
2 Mechanism of LCCC separation of block copolymers
3 LCCC separation of block copolymers
3.1 Selection of solvent
3.2 Selection of stationary phase
3.3 Adjustment of temperature
4 Applications of LCCC separation of block copolymers
5 Computer simulations for the LCCC analysis of block copolymers
6 Conclusions and future developments

中图分类号: 

()

[1] Retsos H, Margiolaki I, Messaritaki A, Anastasiadis S H. Macromolecules, 2001, 34: 5295.
[2] Retsos H, Anastasiadis S H, Pispas S, Mays J W, Hadjichristidis N. Macromolecules, 2003, 37: 524.
[3] Luo Y, Wang X, Zhu Y, Li B G, Zhu S. Macromolecules, 2010, 43: 7472.
[4] Attard G S, Glyde J C, Göltner C G. Nature, 1995, 378: 366.
[5] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Polym. Sci., 2008, 33: 1088.
[6] Savi D? R, Luo L, Eisenberg A, Maysinger D. Science, 2003, 300: 615.
[7] Thurn-Albrecht T, Schotter J, Kästle G, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C, Tuominen M, Russell T. Science, 2000, 290: 2126.
[8] Kim S O, Solak H H, Stoykovich M P, Ferrier N J, de Pablo J J, Nealey P F. Nature, 2003, 424: 411.
[9] Park I, Park S, Cho D, Chang T, Kim E, Lee K, Kim Y J. Macromolecules, 2003, 36: 8539.
[10] Tennikov M, Nefedov P, Lazareva M, Frenkel S Y. Vysokomol. Sojed. (Moscow), 1977, A19: 657
[11] Belenky B G, Valchikhina M D, Vakhtina I A, Gankina E S, Tarakanov O G. J. Chromatogr. A, 1976, 129: 115.
[12] Belenky B G, Gankina E S, Tennikov M B, Vilenchik L Z. J. Chromatogr. A, 1978, 147: 99.
[13] Skvortsov A M, Belen'kii B G, Gankina E S, Tennikov M B. Polym. Sci. USSR, 1978, 20: 768.
[14] Skvortsov A M, Gorbunov A A. Polym. Sci. USSR, 1979, 21: 371.
[15] Gorbunov A A, Zhulina E B, Skvortsov A M. Polymer, 1982, 23: 1133.
[16] Gorbunov A A, Skvortsov A M. Adv. Colloid Interface Sci., 1995, 62: 31.
[17] Entelis S, Evreinov V, Gorshkov A. Adv. Polym. Sci., 1986, 76: 129.
[18] Berek D. Macromol. Symp., 1996, 110: 33.
[19] Pasch H, Trathnigg B. HPLC of Polymers. Berlin: Springer Verlag, 1999. 151.
[20] Pasch H. In Polymer Analysis Polymer Physics. Berlin: Springer Berlin Heidelberg, 1997. 1.
[21] Pasch H, Gallot Y, Trathnigg B. Polymer, 1993, 34: 4986.
[22] Pasch H, Brinkmann C, Gallot Y. Polymer, 1993, 34: 4100.
[23] Pasch H, Augenstein M. Makromol. Chem., 1993, 194: 2533.
[24] Pasch H, Brinkmann C, Much H, Just U. J. Chromatogr. A, 1992, 623: 315.
[25] Lee W, Park S, Chang T. Anal. Chem., 2001, 73: 3884.
[26] Orelli S, Jiang W, Wang Y. Macromolecules, 2004, 37: 10073.
[27] Gong Y, Wang Y. Macromolecules, 2002, 35: 7492.
[28] Jiang W, Khan S, Wang Y. Macromolecules, 2005, 38: 7514.
[29] Gorbunov A A, Vakhrushev A V. J. Chromatogr. A, 2010, 1217: 4825.
[30] Falkenhagen J, Weidner S. Anal. Chem., 2009, 81: 282.
[31] Ljubi T S, Pahovnik D, igon M, agar E. Scientific World J., 2012, 1.
[32] Brun Y. J. Liq. Chromatogr. Relat. Technol., 1999, 22: 3027.
[33] Chang T. In Liquid Chromatography/ FTIR Microspectroscopy/ Microwave Assisted Synthesis. Berlin: Springer Berlin Heidelberg, 2003. 1.
[34] Pasch H. Macromol. Symp., 1996, 110: 107.
[35] Svensson B, Olsson U, Alexandridis P. Langmuir, 2000, 16: 6839.
[36] Zimina T M, Kever Y Y, Melenevskaya Y Y, Zgonnik V N, Belen'kii B G. Polym. Sci. USSR, 1991, 33: 1250.
[37] Malik M, Ahmed H, Trathnigg B. Anal. Bioanal. Chem., 2009, 393: 1797.
[38] Im K, Park H W, Kim Y, Ahn S, Chang T, Lee K, Lee H J, Ziebarth J, Wang Y. Macromolecules, 2008, 41: 3375.
[39] Al Samman M, Radke W, Khalyavina A, Lederer A. Macromolecules, 2010, 43: 3215.
[40] Berek D. Mater. Res. Innov., 2001, 4: 365.
[41] Baran K, Laugier S, Cramail H. Int. J. Polym. Anal. Char., 2000, 6: 123.
[42] Inglis A J, Barner-Kowollik C. Polym. Chem., 2011, 2: 126.
[43] Olesik S. Anal. Bioanal. Chem., 2004, 378: 43.
[44] Berek D. Anal. Bioanal. Chem., 2010, 396: 421.
[45] Evreinov V, Gorshkov A, Prudskova T, Gur'yanova V, Pavlov A, Malkin A Y, Entelis S. Polym. Bull., 1985, 14: 131.
[46] Lee H, Lee W, Chang T, Choi S, Lee D, Ji H, Nonidez W K, Mays J W. Macromolecules, 1999, 32: 4143.
[47] Lee H J, Chang T Y, Lee D S, Shim M S, Ji H N, Nonidez W K, Mays J W. Anal. Chem., 2001, 73: 1726.
[48] Gorshkov A, Much H, Becker H, Pasch H, Evreinov V, Entelis S. J. Chromatogr. A, 1990, 523: 91.
[49] Pasch H, Zammert I. J. Liq. Chromatogr. Relat. Technol., 1994, 17: 3091.
[50] Zimina T M, Kever J J, Melenevskaya E Y, Fell A F. J. Chromatogr. A, 1992, 593: 233.
[51] Falkenhagen J, Much H, Stauf W, Müller A H E. Macromolecules, 2000, 33: 3687.
[52] Pasch H, Augenstein M, Trathnigg B. Macromol. Chem. Phys., 1994, 195: 743.
[53] Schmid C, Weidner S, Falkenhagen J, Barner-Kowollik C. Macromolecules, 2012, 45: 87.
[54] 钟亚兰(Zhong Y L), 蒋序林(Jiang X L). 化学进展(Progress in Chemistry), 2010, 22(4): 706.
[55] Baumgaertel A, Altunta?瘙塂 E, Schubert U S. J. Chromatogr. A, 2012, 1240: 1.
[56] van Hulst M, van der Horst A, Kok W T, Schoenmakers P J. J. Sep. Sci., 2010, 33: 1414.
[57] Macko T, Hunkeler D, Berek D. Macromolecules, 2002, 35: 1797.
[58] Girod M, Phan T N T, Charles L. Rapid Commun. Mass Spectrom, 2008, 22: 3767.
[59] Girod M, Phan T N T, Charles L. Rapid Commun. Mass. Sp, 2009, 23: 1476.
[60] Girod M, Beaudoin E, Charles L. Anal. Methods, 2009, 1: 128.
[61] Nefedov P, Zhmakina T. Polym. Sci. USSR, 1981, 23: 304.
[62] Baran K, Laugier S, Cramail H. Macromol. Chem. Phys., 1999, 200: 2074.
[63] Braun D, Esser E, Rasch H. Int. J. Polym. Anal. Ch., 1998, 4: 501.
[64] Berek D. Macromolecules, 1998, 31: 8517.
[65] Skvortsov A, Gorbunov A, Berek D, Trathnigg B. Polymer, 1998, 39: 423.
[66] Yun H, Olesik S V, Marti E H. J. Micro. Sep., 1999, 11: 53.
[67] Phillips S, Olesik S V. Anal. Chem., 2002, 74: 799.
[68] Souvignet I, Olesik S V. Anal. Chem., 1997, 69: 66.
[69] Yun H, Olesik S V, Marti E H. Anal. Chem., 1998, 70: 3298.
[70] Chang T, Lee H C, Lee W, Park S, Ko C. Macromol. Chem. Phys., 1999, 200: 2188.
[71] Kanazawa H, Sunamoto T, Matsushima Y, Kikuchi A, Okano T. Anal. Chem., 2000, 72: 5961.
[72] 赵贝贝(Zhao B B), 张艳(Zhang Y), 唐涛(Tang T), 王风云(Wang F Y), 张维冰(Zhang W B), 李彤(Li T). 化学进展(Progress in Chemistry), 2012, 24(1): 122.
[73] Hiller W, Pasch H, Sinha P, Wagner T, Thiel J, Wagner M, Müellen K. Macromolecules, 2010, 43: 4853.
[74] Abdulahad A I, Ryu C Y. J. Polym. Sci. Part B: Polym. Phys., 2009, 47: 2533.
[75] Hiller W, Sinha P, Pasch H. Macromol. Chem. Phys., 2009, 210: 605.
[76] Falkenhagen J, Much H, Stauf W, Müller A. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem. ), 1999, 40: 984.
[77] Mass V, Bellas V, Pasch H. Macromol. Chem. Phys., 2008, 209: 2026.
[78] Sinha P, Hiller W, Bellas V, Pasch H. J. Sep. Sci., 2012, 35: 1731.
[79] Malik M I, Sinha P, Bayley G M, Mallon P E, Pasch H. Macromol. Chem. Phys., 2011, 212: 1221.
[80] Park S, Ryu D Y, Kim J K, Ree M, Chang T. Polymer, 2008, 49: 2170.
[81] Lee W, Cho D, Chang T, Hanley K J, Lodge T P. Macromolecules, 2001, 34: 2353.
[82] Im K, Park H W, Kim Y, Chung B, Ree M, Chang T. Anal. Chem., 2007, 79: 1067.
[83] Min K, Gao H, Matyjaszewski K. J. Am. Chem. Soc., 2005, 127: 3825.
[84] Hiller W, Sinha P, Pasch H. Macromol. Chem. Phys., 2007, 208: 1965.
[85] Baran K, Laugier S, Cramail H. J. Chromatogr. B, 2001, 753: 139.
[86] Pasch H, Rode K. J. Chromatogr. A, 1995, 699: 21.
[87] Trathnigg B, Gorbunov A. Macromol. Symp., 2006, 237: 18.
[88] Trathnigg B. Polymer, 2005, 46: 9211.
[89] Malik M I, Trathnigg B, Kappe C O. Macromol. Chem. Phys., 2007, 208: 2510.
[90] Malik M I, Trathnigg B, Oliver Kappe C. Eur. Polym. J., 2009, 45: 899.
[91] Malik M I, Trathnigg B, Saf R. J. Chromatogr. A, 2009, 1216: 6627.
[92] Malik M I, Trathnigg B, Bartl K, Saf R. Anal. Chim. Acta, 2010, 658: 217.
[93] Lee W, Cho D, Chun B O, Chang T, Ree M. J. Chromatogr. A, 2001, 910: 51.
[94] Ahmed H, Trathnigg B, Kappe C O, Saf R. Eur. Polym. J., 2009, 45: 2338.
[95] Ahmed H, Trathnigg B, Kappe C O, Saf R. Eur. Polym. J., 2010, 46: 494.
[96] Fandrich N, Falkenhagen J, Weidner S M, Staal B, Thünemann A F, Laschewsky A. Macromol. Chem. Phys., 2010, 211: 1678.
[97] Baumgaertel A, Weber C, Fritz N, Festag G, Altuntas E, Kempe K, Hoogenboom R, Schubert U S. J. Chromatogr. A, 2011, 1218: 8370.
[98] Macko T, Hunkeler D. In Chromatography/FTIR Microspectroscopy/Microwave Assisted Synthesis. Berlin: Springer-Verlag Berlin, 2003. 61.
[99] Zimina T M, Fell A F, Castledine J B. Polymer, 1992, 33: 4129.
[100] Zimina T M, Kever Y Y, Melenevskaya Y Y, Zgonnik V N, Belenkii B G. Vysokomolekulyarnye Soedineniya Seriya A, 1991, 33: 1349.
[101] Jacquin M, Muller P, Lizarraga G, Bauer C, Cottet H, Théodoly O. Macromolecules, 2007, 40: 2672.
[102] Jacquin M, Muller P, Talingting-Pabalan R, Cottet H, Berret J, Futterer T, Théodoly O. J. Colloid Interf. Sci., 2007, 316: 897.
[103] Malik M I, Harding G W, Grabowsky M E, Pasch H. J. Chromatogr. A, 2012, 1244: 77.
[104] Schmid C, Falkenhagen J, Barner-Kowollik C. J. Polym. Sci., Part A: Pdym. Chem., 2011, 49: 1.
[105] Malik M I, Harding G W, Pasch H. Anal. Bioanal. Chem., 2012, 403: 601.
[106] Rollet M, Glé D, Phan T N T, Guillaneuf Y, Bertin D, Gigmes D. Macromolecules, 2012, 45: 7171.
[107] Ahmed H, Trathnigg B. J. Sep. Sci., 2009, 32: 1390.
[108] Malik M I, Trathnigg B, Kappe C O. J. Chromatogr. A, 2009, 1216: 1167.
[109] Malik M I, Trathnigg B. J. Sep. Sci., 2009, 32: 1771.
[110] Macko T, Brüll R, Zhu Y, Wang Y. J. Sep. Sci., 2010, 33: 3446.
[111] Yang X, Zhu Y, Wang Y. Polymer, 2013, 54: 3730.
[112] Ziebarth J D, Williams J, Wang Y. Macromolecules, 2008, 41: 4929.
[113] Patel B, Ziebarth J D, Wang Y. Macromolecules, 2010, 43: 2069.
[114] Ziebarth J D, Wang Y, Polotsky A, Luo M. Macromolecules, 2007, 40: 3498.
[115] Zhu Y, Ziebarth J, Macko T, Wang Y. Macromolecules, 2010, 43: 5888.
[116] Riess G. Prog. Polym. Sci., 2003, 28: 1107.

[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[3] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[4] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[5] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[6] 王倩倩, 吴立萍, 王菁, 王力元*. 嵌段共聚物的导向自组装[J]. 化学进展, 2017, 29(4): 435-442.
[7] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[8] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[9] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[10] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[11] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[12] 盛玉萍, 闫南, 朱雨田, 安健. 嵌段共聚物在选择性溶剂中自组装过程的计算机模拟[J]. 化学进展, 2014, 26(0203): 358-365.
[13] 王志鹏, 袁金颖* . Diels-Alder反应在构建特殊结构高分子中的应用[J]. 化学进展, 2012, 24(12): 2342-2351.
[14] 何乃普, 王荣民. 蛋白质与高分子的自组装[J]. 化学进展, 2012, 24(01): 94-100.
[15] 何文, 丁元菊, 鲁在君, 杨其峰. 两亲嵌段共聚物胶束用作医用材料[J]. 化学进展, 2011, 23(5): 930-940.