English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2462-2475 DOI: 10.7536/PC220308 前一篇   后一篇

• 综述 •

人造细胞的化学构建及其生物医学应用研究

蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波*()   

  1. 化学生物传感与计量学国家重点实验室 湖南大学化学化工学院 生物纳米与分子工程湖南省重点实验室长沙 410082
  • 收稿日期:2022-03-08 修回日期:2022-04-17 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 刘剑波
  • 作者简介:

    刘剑波 博士,湖南大学化学化工学院教授;围绕原始细胞的仿生构筑、人工细胞的化学合成以及化学生物分析与生物医学应用开展研究。

  • 基金资助:
    国家自然科学基金项目(22177032); 湖南省杰出青年基金项目(2021JJ10013)

Chemical Construction of Artificial Cells and Their Biomedical Applications

Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu()   

  1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University,Changsha 410082, China
  • Received:2022-03-08 Revised:2022-04-17 Online:2022-11-24 Published:2022-06-25
  • Contact: Jianbo Liu
  • Supported by:
    the National Natural Science Foundation of China(22177032); the Hunan Province Outstanding Youth Fund Project(2021JJ10013)

人造细胞是模拟生物细胞结构,人工构建的与细胞功能相近的微米囊泡。人造细胞的构建主要有两种模式:自上而下模式主要利用生物学方法对生物基因序列进行重新设计,获得具有细胞类似结构功能的人造细胞;自下而上模式主要利用化学方法采用非生命物质构筑简化的细胞结构模型。自下而上化学模式构建的人造细胞大多只包含执行所需功能的最小单元,具有简单的细胞仿生的结构与功能。本文详细综述了人造细胞的构建模式以及化学构建人造细胞的常见类型,包括脂质囊泡、蛋白体囊泡、聚合物囊泡、凝集体液滴和胶体囊泡等,总结了人造细胞在分析传感、细胞结构与功能模拟、生物载体转运、微纳米反应器、疾病诊疗方面的生物医学应用现状。

Artificial cells are micro-vesicles that are artificially engineered to possess some structures and functions, similar to biological cells. There are two approaches for fabricating artificial cells. The top-down approach mainly makes a kit in biological methods to redesign and modify biological gene sequences to create artificial cells, and the bottom-up approach mainly adopts chemical methods to prepare protocell models from non-living matter. Here we review in detail towards the different chemically constructed artificial cells, including lipid vesicles, proteosomes, polymersomes, coacervate droplets and colloidosomes. Taken together, this minireview unravels an update on recent efforts in biomedical applications of artificial cells over a broad range of analytical sensing, cell structure and function simulation, biological cargo delivery, micro-nano reactors, and disease diagnosis and treatment.

Contents

1 Introduction

2 Construction of artificial cells

2.1 Top-down approach

2.2 Bottom-up approach

3 Classification of chemically constructed artificial cells

3.1 Lipid vesicles

3.2 Proteosomes

3.3 Polymersomes

3.4 Coacervate droplets

3.5 Colloidosomes

4 Biomedical applications of artificial cells

4.1 Simulation of cell structure and function

4.2 Analytical sensing

4.3 Transport of biological carriers

4.4 Micro-reactors

4.5 Diagnosis and treatment of diseases

5 Conclusion and outlook

()
图1 人造细胞的类型:(a)脂质囊泡[42];(b)蛋白体囊泡[43];(c)聚合物囊泡[44];(d)凝集体微滴[45];(e)胶体囊泡[46]
Fig. 1 Types of artificial cells. (a) Lipid vesicles[42]; copyright 2018, Springer Nature. (b) Proteosomes[43]; copyright 2014, American Chemical Society. (c) Polymersomes[44]; copyright 2014, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Coacervate droplets[45]; copyright 2016, The Royal Society of Chemistry. (e) Colloidosomes[46]. Copyright 2002, The American Association for the Advancement of Science
图2 不同的磷脂组装方式及其应用:(a)管状;(b)锥体;(c)双胞体;(d)囊泡;(e)池堆;(f)具有功能膜、相分离的胞浆和蛋白质合成的代谢过程的人造细胞;(g)人造细胞的分裂;(h)人造组织[55]
Fig. 2 Existing forms of phospholipid assemblies and their applications. (a) Tubes; (b) cones; (c) bicelles; (d) vesicles; (e) cisternae stacks; (f) artificial cells with functional membranes, phase-separated cytosol, and metabolism process of protein synthesis; (g) the division of artificial cells; (h) Artificial tissues[55]. Copyright 2020, Wiley-VCH GmbH
图3 制备多腔室囊泡和单层囊泡的方法:(a)挤压法;(b)电场法;(c)液滴在不同相之间转移形成方法;(d)微流控技术[58]
Fig. 3 Methods for the preparation of multi-chambered vesicles and unilamellar vesicles. (a) Extrusion method; (b) electric field method; (c) droplet transfer formation method between different phases; (d) microfluidic technology[58]. Copyright 2017, American Chemical Society
图4 聚合诱导蛋白体囊泡形成的示意图
Fig. 4 Schematic representation of polymerization-induced proteosome formation
图5 (a)二嵌段共聚物形成的聚合物囊泡以及二嵌段共聚物、三嵌段共聚物和接枝共聚物示意图[67];(b)麦芽三糖-b-聚(N-n-丙基甘氨酸)嵌段共聚物的化学结构和自组装成溶质可渗透囊泡的示意图[70]
Fig. 5 (a) Schematic diagram of polymersomes formed by diblock copolymers and diblock copolymers, triblock copolymers and graft copolymers[67]; Copyright 2018, The Royal Society of Chemistry. (b) Schematic diagram of the chemical structure of maltotriose-b-poly(N-n-propylglycine)block copolymer and self-assembly into solute-permeable vesicles[70]. Copyright 2021, American Chemical Society
图6 凝集体液滴的构建:(a)通过混合聚阳离子和聚阴离子形成凝集体液滴的示意图;(b)由pLys和RNA形成的凝集体液滴的例子,右图是由异硫氰酸荧光素标记的刚形成的凝集体液滴;(c)响应环境刺激的凝集体液滴的动态区室化的示意图[72]
Fig. 6 Construction of coacervate droplets. (a) Schematic illustration of the formation of coacervate droplets by mixing polycations and polyanions; (b) example of coacervate droplets formed by pLys and RNA, the right image is a freshly formed coacervate droplet labeled with fluorescein isothiocyanate; (c) schematic illustration of the dynamic compartmentalization of coacervate droplets in response to environmental stimuli[72]. Copyright 2020, AIP Publishing
图7 通过微流控技术从乳化液模板中获得的胶体囊泡示意图[77]
Fig. 7 Schematic diagram of colloidosomes obtained from emulsion templates by microfluidic technology[77]. Copyright 2008, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 DPPC自组装在凝集体液滴表面,发展了一种含磷脂双层膜结构的内部大分子拥挤的人造细胞新模型——凝集体巨型囊泡[83]
Fig. 8 Self-assemble of DPPC on the surface of coacervate droplets, which resulted in a new model of artificial cells with internal macromolecular crowding with phospholipid bilayer membrane structure, coacervate giant vesicles[83]. Copyright 2021, American Chemical Society
图9 AuNP介导的磷脂囊泡融合,模拟细胞融合过程。(a)AuNP标记的囊泡示意图;(b)生物素化脂质的化学结构;(c)囊泡界面膜(VIM)融合的示意图和荧光图[93]
Fig. 9 Gold nanoparticles-mediated fusion of phospholipid vesicles, mimicking the process of cell fusion. (a) Schematic of the AuNP-labelled vesicle; (b) chemical structure of the biotinylated lipid; (c) schematic and fluorescence microscopy image of vesicle interface membrane(VIM) fusion[93]. Copyright 2018, Springer Nature
图10 模拟细胞间相互作用。(a)RBCs中过氧化物酶活性的示意图。(b)蜂毒肽功能化的含GOx的GUV和过氧化物酶活性RBC之间化学信号转导的示意图。(c)定制声学捕集装置的示意图。(d)1D和2D GUV组件的示意图和荧光图[96]
Fig. 10 Simulation of cell-to-cell interactions. (a) Schematic representation showing peroxidase activity in RBCs. (b) Schematic showing chemical signal transduction between a melittin-functionalized GOx-containing GUV and peroxidase active RBC. (c) Schematic illustration of custom-made acoustic trapping device. (d) Schematic illustrations and representative fluorescence microscopy images of 1D and 2D GUV assemblies[96]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图11 能够在两个人造细胞群体之间进行信号放大的通信路径的设计。(a)信号分子(AMP)由发送者人造细胞产生,并扩散到接收者人造细胞,在那里其被感知、处理并产生内部响应;(b)尽管外部环境中的化学信号被强烈稀释,但接收器中的信号放大仍允许长距离通信[102]
Fig. 11 Design of a communication path enabling signal amplification between two artificial cell populations. (a) A signaling molecule (AMP) is produced by the sender artificial cell and diffuses to the receiver artificial cell, where it is sensed, processed, and an internal response is generated; (b) signal amplification in the receiver allows long-distance communication despite strong dilution of chemical signals in the external environment[102]. Copyright 2020, Springer Nature
图12 具有“登机门”和“下机门”的交联聚合物囊泡可以通过在室温下打开“登机门”来装载生物大分子,在体温下将其固定在纯水中,并在酸性条件下通过“下机门”释放,如在生理温度下的核内体中。稍微降低细胞内的温度,可以使最初的“登机门”成为第二个“下机门”,进一步加速生物大分子的释放。右上角的条形颜色代表聚合物囊泡膜的不同状态,取决于温度和pH值[110]
Fig. 12 Cross-linked polymersomes with “boarding gate” and “debarkation gate” can be loaded with biomacromolecules by opening the “boarding gate” at room temperature. They are immobilized in pure water at body temperature and released through the “debarkation gate” under acidic conditions, such as in endosomes at physiological temperatures. Slightly lowering the temperature inside the cell can make the initial “boarding gate” become the second “debarkation gate”, further accelerating the release of biomacromolecules. The color of the bars in the upper right corner represents the different states of the polymersome membrane, depending on the on temperature and pH[110]. Copyright 2018, American Chemical Society
图13 微纳米反应器的设计。(a)将GOx/HRP级联酶反应分别固定在人造细胞水凝胶颗粒内室和外室,使不相容的级联反应顺利进行;(b)人造细胞多室水凝胶颗粒的明场图像[111]
Fig. 13 Design of the micro-nanoreactor. (a) The glucose oxidase (GOx)/horseradish peroxidase (HRP) cascade enzyme reactions were immobilized in the inner and outer chambers of the artificial cell hydrogel particles, respectively, enabling the incompatible cascade reactions to proceed smoothly. (b) Brightfield image of an artificial cellular multi-chambered hydrogel particle[111]. Copyright 2017, Springer Nature
图14 生物来源的人造细胞构建:(a)红细胞膜包覆的人造细胞。通过低渗溶血法从新鲜绵羊血液中提取含血红蛋白的膜片段,然后加入带正电荷的凝集体液滴。碎片在凝集体液滴表面的自发组装导致生物膜涂层的形成;(b)构建的人造细胞表现出增强的血液相容性和GOx/血红蛋白级联酶的活性[113]
Fig. 14 Construction of biologically derived artificial cells. (a) An artificial cell covered by the membrane of red blood cells. Hemoglobin-containing membrane fragments were extracted from fresh sheep blood by hypotonic hemolysis, followed by addition of positively charged coacervate droplets. The spontaneous assembly of debris on the surface of coacervate droplets leads to the formation of biofilm coatings. (b) The constructed artificial cells exhibited enhanced blood compatibility and glucose oxidase/hemoglobin cascade activity[113]. Copyright 2020, Springer Nature
[1]
Chang T M S. Science, 1964, 146(3643): 524.

doi: 10.1126/science.146.3643.524     URL    
[2]
Arriaga L R, Datta S S, Kim S H, Amstad E, Kodger T E, Monroy F, Weitz D A. Small, 2014, 10(5): 950.

doi: 10.1002/smll.201301904     pmid: 24150883
[3]
Booth R, Qiao Y, Li M, Mann S. Angew. Chem. Int. Ed., 2019, 58(27): 9120.

doi: 10.1002/anie.201903756     URL    
[4]
Chang H Y, Sheng Y J, Tsao H K. Soft Matter, 2014, 10(34): 6373.

doi: 10.1039/C4SM01092B     URL    
[5]
Chen Y A, Scheller R H. Nat. Rev. Mol. Cell Biol., 2001, 2(2): 98.

doi: 10.1038/35052017     URL    
[6]
Altamura E, Milano F, Tangorra R R, Trotta M, Omar O H, Stano P, Mavelli F. PNAS, 2017, 114(15): 3837.

doi: 10.1073/pnas.1617593114     URL    
[7]
Cape J L, Monnard P A, Boncella J M. Chem. Sci., 2011, 2(4): 661.

doi: 10.1039/c0sc00575d     URL    
[8]
Chang T M S. Blood Purif., 2000, 18(2): 91.

doi: 10.1159/000014430     URL    
[9]
Chang T M S. Nat. Rev. Drug Discov., 2005, 4(3): 221.

doi: 10.1038/nrd1659     URL    
[10]
Chen I A, Salehi-Ashtiani K, Szostak J W. J. Am. Chem. Soc., 2005, 127(38): 13213.

doi: 10.1021/ja051784p     URL    
[11]
Gibson D G, Glass J I, Merryman C, Vashee S, Krishnakumar R, Assad-garcia N, Andrews-pfannkoch C, Denisova E A, Young L, Qi Z, Segall-shapiro T H, Calvey C H, Lartigue C, Parmar P P, Hutchison C A, Smith H O, Venter J C, Noskov V N, Chuang R, Algire M A, Benders G A, Montague M G, Ma L I, Moodie M M. Science, 2010, 329(5987): 52.

doi: 10.1126/science.1190719     URL    
[12]
Hutchison C A III, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, Pelletier J F, Qi Z Q, Richter R A, Strychalski E A, Sun L J, Suzuki Y, Tsvetanova B, Wise K S, Smith H O, Glass J I, Merryman C, Gibson D G, Venter J C. Science, 2016, 351(6280): 1414.
[13]
Pelletier J F, Sun L J, Wise K S, Assad-Garcia N, Karas B J, Deerinck T J, Ellisman M H, Mershin A, Gershenfeld N, Chuang R Y, Glass J I, Strychalski E A. Cell, 2021, 184(9): 2430.

doi: 10.1016/j.cell.2021.03.008     URL    
[14]
Dora Tang T Y, Rohaida Che Hak C, Thompson A J, Kuimova M K, Williams D S, Perriman A W, Mann S. Nat. Chem., 2014, 6(6): 527.

doi: 10.1038/nchem.1921     pmid: 24848239
[15]
Lu T M, Spruijt E. J. Am. Chem. Soc., 2020, 142(6): 2905.

doi: 10.1021/jacs.9b11468     URL    
[16]
Saha B, Chatterjee A, Reja A, Das D. Chem. Commun., 2019, 55(94): 14194.

doi: 10.1039/C9CC07358B     URL    
[17]
Donau C, Späth F, Sosson M, Kriebisch B A K, Schnitter F, Tena-solsona M, Kang H, Salibi E, Sattler M, Mutschler H, Boekhoven J. Nat. Chem., 2020, 11(1):5167.
[18]
Olivi L, Berger M, Creyghton R N P, de Franceschi N, Dekker C, Mulder B M, Claassens N J, ten Wolde P R, van der Oost J. Nat. Commun., 2021, 12: 4531.

doi: 10.1038/s41467-021-24772-8     URL    
[19]
Salehi-Reyhani A, Ces O, Elani Y. Exp. Biol. Med., 2017, 242(13): 1309.

doi: 10.1177/1535370217711441     URL    
[20]
Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dötsch V, Bernhard F. J. Struct. Biol., 2007, 159(2): 194.

doi: 10.1016/S1047-8477(07)00164-5     URL    
[21]
Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S. Protein Expr. Purif., 2005, 41(1): 27.

doi: 10.1016/j.pep.2005.01.013     URL    
[22]
Elani Y, Trantidou T, Wylie D, Dekker L, Polizzi K, Law R V, Ces O. Sci. Rep., 2018, 8: 4564.

doi: 10.1038/s41598-018-22263-3     URL    
[23]
Jayaraman P, Yeoh J W, Jayaraman S, Teh A Y, Zhang J Y, Poh C L. ACS Synth. Biol., 2018, 7(4): 986.

doi: 10.1021/acssynbio.7b00422     URL    
[24]
Dupin A, Simmel F C. Nat. Chem., 2019, 11(1): 32.

doi: 10.1038/s41557-018-0174-9     URL    
[25]
Casini A, Chang F Y, Eluere R, King A M, Young E M, Dudley Q M, Karim A, Pratt K, Bristol C, Forget A, Ghodasara A, Warden-Rothman R, Gan R, Cristofaro A, Borujeni A E, Ryu M H, Li J, Kwon Y C, Wang H, Tatsis E, Rodriguez-Lopez C, O’Connor S, Medema M H, Fischbach M A, Jewett M C, Voigt C, Gordon D B. J. Am. Chem. Soc., 2018, 140(12): 4302.

doi: 10.1021/jacs.7b13292     URL    
[26]
Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T. FEBS Lett., 2004, 576(3): 387.

pmid: 15498568
[27]
Rustad M, Eastlund A, Jardine P, Noireaux V. Synth. Biol., 2018, 3(1): ysy002.

doi: 10.1093/synbio/ysy002     URL    
[28]
Elani Y. Biochem. Soc. Trans., 2016, 44(3): 723.

doi: 10.1042/BST20160052     URL    
[29]
Martino C, de Mello A J. Interface Focus., 2016, 6(4): 20160011.

doi: 10.1098/rsfs.2016.0011     URL    
[30]
Matosevic S, Paegel B M. J. Am. Chem. Soc., 2011, 133(9): 2798.

doi: 10.1021/ja109137s     pmid: 21309555
[31]
Matosevic S, Paegel B M. Nat. Chem., 2013, 5(11): 958.

doi: 10.1038/nchem.1765     pmid: 24153375
[32]
Elani Y, Solvas X C I, Edel J B, Law R V, Ces O. Chem. Commun., 2016, 52(35): 5961.

doi: 10.1039/C6CC01434H     URL    
[33]
Chen Z W, De Queiros Silveira G, Ma X D, Xie Y S, Wu Y A, Barry E, Rajh T, Fry H C, Laible P D, Rozhkova E A. Angew. Chem. Int. Ed., 2019, 58(15): 4896.

doi: 10.1002/anie.201813963     URL    
[34]
Chemin M, Brun P M, Lecommandoux S, Sandre O, Le Meins J F. Soft Matter, 2012, 8(10): 2867.

doi: 10.1039/c2sm07188f     URL    
[35]
Cello J, Paul A V, Wimmer E. Science, 2002, 297(5583): 1016.

doi: 10.1126/science.1072266     URL    
[36]
Bonnaud C, Monnier C A, Demurtas D, Jud C, Vanhecke D, Montet X, Hovius R, Lattuada M, Rothen-Rutishauser B, Petri-Fink A. ACS Nano, 2014, 8(4): 3451.

doi: 10.1021/nn406349z     pmid: 24611878
[37]
Ali S, Bleuel M, Prabhu V M. ACS Macro Lett., 2019, 8(3): 289.

doi: 10.1021/acsmacrolett.8b00952     URL    
[38]
Chen Y F, Yuan M, Zhang Y W, Liu S Y, Yang X H, Wang K M, Liu J B. Chem. Sci., 2020, 11(32): 8617.

doi: 10.1039/D0SC03849K     URL    
[39]
Huang J, Morin F J, Laaser J E. Macromolecules, 2019, 52(13): 4957.

doi: 10.1021/acs.macromol.9b00036    
[40]
Jing H R, Lin Y N, Chang H J, Bai Q W, Liang D H. Langmuir, 2019, 35(16): 5587.

doi: 10.1021/acs.langmuir.9b00470     URL    
[41]
Dawson W M, Rhys G G, Woolfson D N. Curr. Opin. Chem. Biol., 2019, 52: 102.

doi: 10.1016/j.cbpa.2019.06.011     URL    
[42]
van Nies P, Westerlaken I, Blanken D, Salas M, Mencía M, Danelon C. Nat. Commun., 2018, 9: 1583.

doi: 10.1038/s41467-018-03926-1     URL    
[43]
Huang X, Patil A J, Li M, Mann S. J. Am. Chem. Soc., 2014, 136(25): 9225.

doi: 10.1021/ja504213m     pmid: 24905973
[44]
Peters R J R W, Marguet M, Marais S, Fraaije M W, Van Hest J C M, Lecommandoux S. Angew. Chem. Int. Ed., 2014, 53(1): 146.

doi: 10.1002/anie.201308141     pmid: 24254810
[45]
Krishna Kumar R, Harniman R L, Patil A J, Mann S. Chem. Sci., 2016, 7(9): 5879.

doi: 10.1039/C6SC00205F     URL    
[46]
Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Science, 2002, 298(5595): 1006.

pmid: 12411700
[47]
Chechetka S A, Yuba eiji, Kono K, Yudasaka M, Bianco A, Miyako E. Angew. Chem. Int. Ed., 2016, 55(22): 6476.

doi: 10.1002/anie.201602453     pmid: 27079747
[48]
Chang T M S. Artif. Organs, 2004, 28(3): 265.

doi: 10.1111/j.1525-1594.2004.47343.x     URL    
[49]
Carreras P, Elani Y, Law R V, Brooks N J, Seddon J M, Ces O. Biomicrofluidics, 2015, 9(6): 064121.

doi: 10.1063/1.4938731     URL    
[50]
Gao W W, Hu C M J, Fang R H, Zhang L F. J. Mater. Chem. B, 2013, 1(48): 6569.

doi: 10.1039/c3tb21238f     URL    
[51]
Dzieciol A J, Mann S. Chem. Soc. Rev., 2012, 41(1): 79.

doi: 10.1039/c1cs15211d     pmid: 21952478
[52]
Li Q C, Han X J. iScience, 2018, 8: 138.

doi: 10.1016/j.isci.2018.09.020     URL    
[53]
Zong W, Ma S H, Zhang X N, Wang X J, Li Q C, Han X J. J. Am. Chem. Soc., 2017, 139(29): 9955.

doi: 10.1021/jacs.7b04009     pmid: 28677973
[54]
Vance J A, Devaraj N K. J. Am. Chem. Soc., 2021, 143(22): 8223.

doi: 10.1021/jacs.1c03436     URL    
[55]
Wang X J, Du H, Wang Z, Mu W, Han X J. Adv. Mater., 2021, 33(6): 2002635.

doi: 10.1002/adma.202002635     URL    
[56]
Li C, Li Q C, Wang Z, Han X J. Anal. Chem., 2020, 92(8): 6060.

doi: 10.1021/acs.analchem.0c00430     URL    
[57]
Deng N N, Yelleswarapu M, Huck W T S. J. Am. Chem. Soc., 2016, 138(24): 7584.

doi: 10.1021/jacs.6b02107     URL    
[58]
Trantidou T, Friddin M, Elani Y, Brooks N J, Law R V, Seddon J M, Ces O. ACS Nano, 2017, 11(7): 6549.

doi: 10.1021/acsnano.7b03245     pmid: 28658575
[59]
Wang X J, Tian L F, Du H, Li M, Mu W, Drinkwater B W, Han X J, Mann S. Chem. Sci., 2019, 10(41): 9446.

doi: 10.1039/C9SC04522H     URL    
[60]
Pattni B S, Chupin V V, Torchilin V P. Chem. Rev., 2015, 115(19): 10938.

doi: 10.1021/acs.chemrev.5b00046     URL    
[61]
Szostak J W, Mansy S S, Schrum J P, Krishnamurthy M, TobÉ S, Treco D A. Nature, 2008, 454(7200):122.

doi: 10.1038/nature07018     URL    
[62]
Zhou J, Wang Q X, Zhang C Y. J. Am. Chem. Soc., 2013, 135(6): 2056.

doi: 10.1021/ja3110329     URL    
[63]
Kuan S L, Bergamini F R G, Weil T. Chem. Soc. Rev., 2018, 47(24): 9069.

doi: 10.1039/C8CS00590G     URL    
[64]
Liu F, Cai Y Q, Wang H, Yang X L, Zhao H Y. J. Mater. Chem. B, 2021, 9(5): 1406.

doi: 10.1039/D0TB02635B     URL    
[65]
Rawlings A E, Bramble J P, Walker R, Bain J, Galloway J M, Staniland S S. PNAS, 2014, 111(45): 16094.

doi: 10.1073/pnas.1409256111     pmid: 25349410
[66]
Huang X, Li M, Green D C, Williams D S, Patil A J, Mann S. Nat. Commun., 2013, 4: 2239.

doi: 10.1038/ncomms3239     pmid: 23896993
[67]
Rideau E, Dimova R, Schwille P, Wurm F R, Landfester K. Chem. Soc. Rev., 2018, 47(23): 8572.

doi: 10.1039/C8CS00162F     URL    
[68]
So S, Lodge T P. Langmuir, 2015, 31(1): 594.

doi: 10.1021/la504605e     URL    
[69]
Deplazes A, Huppenbauer M. Syst. Synth. Biol., 2009, 3(1/4): 55.

doi: 10.1007/s11693-009-9029-4     URL    
[70]
Okuno Y, Nishimura T, Sasaki Y, Akiyoshi K. Biomacromolecules, 2021, 22(7): 3099.

doi: 10.1021/acs.biomac.1c00530     URL    
[71]
Valley B, Jing B X, Ferreira M, Zhu Y X. ACS Appl. Mater. Interfaces, 2019, 11(7): 7472.

doi: 10.1021/acsami.8b21674     URL    
[72]
Deng N N. Biomicrofluidics, 2020, 14(5): 051301.

doi: 10.1063/5.0023678     URL    
[73]
Liu Z, Chen J, Bai Q, Lin Y, Liang D. Langmuir, 2022, 38(20):6425.

doi: 10.1021/acs.langmuir.2c00580     URL    
[74]
Love C, Steinkühler J, Gonzales D T, Yandrapalli N, Robinson T, Dimova R, Tang T Y D. Angew. Chem. Int. Ed., 2020, 59(15): 5950.

doi: 10.1002/anie.201914893     URL    
[75]
Deng N N, Huck W T S. Angew. Chem. Int. Ed., 2017, 56(33): 9736.

doi: 10.1002/anie.201703145     URL    
[76]
Martin N, Tian L F, Spencer D, Coutable-Pennarun A, Anderson J L R, Mann S. Angew. Chem., 2019, 131(41): 14736.

doi: 10.1002/ange.201909228     URL    
[77]
Lee D, Weitz D A. Adv. Mater., 2008, 20(18): 3498.

doi: 10.1002/adma.200800918     URL    
[78]
Guan B Y, Yu L, Lou X W D. Adv. Mater., 2016, 28(43): 9596.

doi: 10.1002/adma.201603622     URL    
[79]
Gao J L, Ma S H, Major D T, Nam K, Pu J Z, Truhlar D G. Chem. Rev., 2006, 106(8): 3188.

doi: 10.1021/cr050293k     URL    
[80]
Gardner P M, Winzer K, Davis B G. Nat. Chem., 2009, 1(5): 377.

doi: 10.1038/nchem.296     pmid: 21378891
[81]
Grommet A B, Feller M, Klajn R. Nat. Nanotechnol., 2020, 15(4): 256.

doi: 10.1038/s41565-020-0652-2     pmid: 32303705
[82]
Elani Y. Angew. Chem. Int. Ed., 2021, 60(11): 5602.

doi: 10.1002/anie.202006941     URL    
[83]
Zhang Y W, Chen Y F, Yang X H, He X X, Li M, Liu S Y, Wang K M, Liu J B, Mann S. J. Am. Chem. Soc., 2021, 143(7): 2866.

doi: 10.1021/jacs.0c12494     URL    
[84]
Granieri L, Baret J C, Griffiths A D, Merten C A. Chem. Biol., 2010, 17(3): 229.
[85]
Diguet A, Yanagisawa M, Liu Y J, Brun E, Abadie S, Rudiuk S, Baigl D. J. Am. Chem. Soc., 2012, 134(10): 4898.

doi: 10.1021/ja211664f     URL    
[86]
Kunding A H, Mortensen M W, Christensen S M, Stamou D. Biophys. J., 2008, 95(3): 1176.

doi: 10.1529/biophysj.108.128819     URL    
[87]
Patil Y P, Ahluwalia A K, Jadhav S. Chem. Phys. Lipids, 2013, 167/168: 1.

doi: 10.1016/j.chemphyslip.2013.01.003     URL    
[88]
Woo Y, Heo Y, Shin K, Yi G R. J. Biomed. Nanotechnol., 2013, 9(4): 610.

doi: 10.1166/jbn.2013.1543     URL    
[89]
Buboltz J T, Bwalya C, Williams K, Schutzer M. Langmuir, 2007, 23(24): 11968.

doi: 10.1021/la702490r     URL    
[90]
Biner O, Schick T, Müller Y, von Ballmoos C. FEBS Lett., 2016, 590(14): 2051.

doi: 10.1002/1873-3468.12233     URL    
[91]
Xu Z, Hueckel T, Irvine W T M, Sacanna S. Nature, 2021, 597(7875): 220.

doi: 10.1038/s41586-021-03774-y     URL    
[92]
Damiati S. Macromol. Res., 2020, 28(11): 1046.

doi: 10.1007/s13233-020-8142-9     URL    
[93]
Bolognesi G, Friddin M S, Salehi-Reyhani A, Barlow N E, Brooks N J, Ces O, Elani Y. Nat. Commun., 2018, 9: 1882.

doi: 10.1038/s41467-018-04282-w     pmid: 29760422
[94]
Ishmukhametov R R, Russell A N, Berry R M. Nat. Commun., 2016, 7: 13025.

doi: 10.1038/ncomms13025     pmid: 27708275
[95]
Qiao Y, Li M, Booth R, Mann S. Nat. Chem., 2017, 9(2): 110.

doi: 10.1038/nchem.2617     pmid: 28282044
[96]
Wang X J, Tian L F, Ren Y S, Zhao Z Y, Du H, Zhang Z Z, Drinkwater B W, Mann S, Han X J. Small, 2020, 16(27): 1906394.

doi: 10.1002/smll.201906394     URL    
[97]
Lin C, Zhang Q X, Yeh Y C. Anal. Methods, 2019, 11(10): 1400.

doi: 10.1039/C9AY00070D     URL    
[98]
Adamala K P, Martin-Alarcon D A, Guthrie-Honea K R, Boyden E S. Nat. Chem., 2017, 9(5): 431.

doi: 10.1038/nchem.2644     URL    
[99]
Lentini R, Santero S P, Chizzolini F, Cecchi D, Fontana J, Marchioretto M, del Bianco C, Terrell J L, Spencer A C, Martini L, Forlin M, Assfalg M, Serra M D, Bentley W E, Mansy S S. Nat. Commun., 2014, 5: 4012.

doi: 10.1038/ncomms5012     URL    
[100]
Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. J. Am. Chem. Soc., 2019, 141(28): 11103.

doi: 10.1021/jacs.9b03300     URL    
[101]
Boyd M A, Kamat N P. Trends Biotechnol., 2021, 39(9): 927.

doi: 10.1016/j.tibtech.2020.12.002     URL    
[102]
Buddingh B C, Elzinga J, van Hest J C M. Nat. Commun., 2020, 11: 1652.

doi: 10.1038/s41467-020-15482-8     URL    
[103]
Hindley J W, Zheleva D G, Elani Y, Charalambous K, Barter L M C, Booth P J, Bevan C L, Law R V, Ces O. PNAS, 2019, 116(34): 16711.

doi: 10.1073/pnas.1903500116     pmid: 31371493
[104]
Zhang Y, Kojima T, Kim G, Mcnerney M P, Takayama S, Styczynski M P. Nat. Chem., 2021, 12(1):5724.
[105]
Kamiya K, Kawano R, Osaki T, Akiyoshi K, Takeuchi S. Nat. Chem., 2016, 8(9): 881.

doi: 10.1038/nchem.2537     pmid: 27554415
[106]
Zou Y, Zheng M, Yang W J, Meng F H, Miyata K, Kim H J, Kataoka K, Zhong Z Y. Adv. Mater., 2017, 29(42): 1703285.

doi: 10.1002/adma.201703285     URL    
[107]
Ianeselli A, Tetiker D, Stein J, Kühnlein A, Mast C B, Braun D, Dora Tang T Y. Nat. Chem., 2022, 14(1): 32.

doi: 10.1038/s41557-021-00830-y     URL    
[108]
Samanta A, Sabatino V, Ward T R, Walther A. Nat. Nanotechnol., 2020, 15(11): 914.

doi: 10.1038/s41565-020-0761-y     URL    
[109]
Gao N, Xu C, Yin Z P, Li M, Mann S. J. Am. Chem. Soc., 2022, 144(9): 3855.

doi: 10.1021/jacs.1c11414     URL    
[110]
Wang F, Gao J Y, Xiao J G, Du J Z. Nano Lett., 2018, 18(9): 5562.

doi: 10.1021/acs.nanolett.8b01985     URL    
[111]
Tan H L, Guo S, Dinh N D, Luo R C, Jin L, Chen C H. Nat. Commun., 2017, 8: 663.

doi: 10.1038/s41467-017-00757-4     URL    
[112]
Bakh N A, Cortinas A B, Weiss M A, Langer R S, Anderson D G, Gu Z, Dutta S, Strano M S. Nat. Chem., 2017, 9(10): 937.

doi: 10.1038/nchem.2857     URL    
[113]
Liu S Y, Zhang Y W, Li M, Xiong L, Zhang Z J, Yang X H, He X X, Wang K M, Liu J B, Mann S. Nat. Chem., 2020, 12(12): 1165.

doi: 10.1038/s41557-020-00585-y     URL    
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[5] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[6] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.
[7] 付先彪, 喻桂朋. 共价有机框架材料催化剂[J]. 化学进展, 2016, 28(7): 1006-1015.
[8] 刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 多光谱光声层析成像及其在生物医学中的应用[J]. 化学进展, 2015, 27(10): 1459-1469.
[9] 王娇娇, 冯苗, 詹红兵*. 石墨烯量子点的制备[J]. 化学进展, 2013, 25(01): 86-94.
[10] 杜凯, 朱艳红, 徐辉碧, 杨祥良. 多功能磁性纳米粒的合成、修饰及生物医学应用[J]. 化学进展, 2011, 23(11): 2287-2298.
[11] 黄毅,黄金花,谢青季,姚守拙. 糖-蛋白质相互作用*[J]. 化学进展, 2008, 20(06): 942-950.