English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2432-2461 DOI: 10.7536/PC220439 前一篇   后一篇

• 综述 •

晶态咔唑基有机室温磷光材料

龚筑轲, 许辉*()   

  1. 黑龙江大学化学化工与材料学院 哈尔滨 150080
  • 收稿日期:2022-04-29 修回日期:2022-07-22 出版日期:2022-11-24 发布日期:2022-09-19
  • 通讯作者: 许辉
  • 作者简介:

    许辉 二级教授,博士生导师,国家百千万人才工程及国家青年人才计划入选者。2006年毕业于复旦大学有机化学专业,获博士学位。之后一直在黑龙江大学工作。2011-2013年在新加坡国立大学化学系从事博士后研究。作为洪堡资深学者于2017-2019年在德国科隆大学从事合作研究。主要从事膦基光电功能材料及其器件研究。已在Nat. Photon.Nat. Commun.Sci. Adv.ChemJACSAngew. Chem. Int. Ed.Adv. Mater.等期刊上发表SCI收录论文130余篇,获得黑龙江省科学技术奖自然科学类一等奖、中国光学十大进展提名奖等。

Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials

Zhuke Gong, Hui Xu()   

  1. School of Chemistry and Materials, Heilongjiang University,Harbin 150080, China
  • Received:2022-04-29 Revised:2022-07-22 Online:2022-11-24 Published:2022-09-19
  • Contact: Hui Xu

自2008年咔唑的有机室温磷光(Organic Room-Temperature Phosphorescence, ORTP)被证实后,以咔唑单元构建ORTP材料成为一种行之有效的方法,并发展出一系列结构多样、性能优异、应用广泛、极具代表性的ORTP材料体系。本文首先总结了改善ORTP材料磷光性能的三种策略,即H-聚集体、重原子效应和给受体结构。在此基础上,系统梳理了晶态咔唑类有机室温磷光材料的研究进展,介绍了通过上述三种策略,抑制三重态松弛、增强自旋轨道耦合,以及减小单重态-三重态能级差、增强分子间电荷转移相互作用力,从而稳定三重激发态、增加系间窜越速率、促进磷光发射,最终实现长寿命高效率晶态咔唑类ORTP材料。最后,介绍了ORTP材料在防伪、信息安全和生物成像等领域的应用。

Since the demonstration of organic room temperature phosphorescence (ORTP) from carbazole in 2008, using carbazole unit to construct ORTP materials has become a feasible approach to developing a series of diverse, high-performance, widely applicable and highly representative ORTP material system. This review paper firstly summarizes three strategies for improving phosphorescence performance of ORTP materials, namely H-aggregation, heavy-atom effect and donor-acceptor structure. Then, the recent progress of crystalline carbazole-based ORTP materials is systematically introduced. Based on these three strategies, triplet relaxation is suppressed, spin-orbital coupling is enhanced, singlet-triplet energy gaps are reduced, and intermolecular charge transfer interactions are strengthened. As a result, the triplet excited states are stabilized, and intersystem crossing is accelerated to facilitate phosphorescence, and thereby realizing long-lifetime high-efficiency crystalline carbazole-based ORTP materials. Their applications in the fields of anti-counterfeiting, information security and bioimaging are briefly discussed.

Contents

1 Introduction

2 Mechanism of organic room-temperature phosphorescence (ORTP)

3 Carbazole based ORTP materials

3.1 Crystallization-induced phosphorescence

3.2 H-aggregation induced phosphorescence

3.3 Heavy-atom effect for ORTP

3.4 Donor-acceptor systems for ORTP

3.5 Benz[f]indole isomer doping inducing ORTP

4 Application of carbazole-based ORTP materials

4.1 Bioimaging and photodynamic therapy

4.2 Information safety

5 Conclusion and outlook

()
图1 代表性ORTP材料的结构式
Fig. 1 Structural formulas of several representative ORTP materials
图2 历年中咔唑类ORTP材料研究的关键进展。2015年,唐本忠等在晶态分子CzBP中观察到了τP为520 ms的ORTP[35];同年,黄维和安众福等构建了首个以H-聚集稳定的ORTP分子DPhCzT,其τP为1.07 s,ΦP为1.25%[36];2017年,安众福等通过调节xy平面上的分子间相互作用构建了能被可见光激发的ORTP分子CPhCz,τP为847.17 ms,ΦP为8.30%[37];同年,卢然等通过柔性烷基链连接发色团Cz和重原子实现具有高发光效率的ORTP分子,其中CC6PhBr的τP为0.20 s,ΦP为39.47%[38];2020年,杨楚罗等构建了扭曲的D-A分子ChrPh2Cz,实现了τP可达511 ms,ΦP为1.50%的长寿命ORTP[39];同年,安众福等制备了兼具晶态、D-A结构和重原子效应的CzBBr,其ΦP可达37.96%[40];而后,刘斌等提出咔唑异构体苯并[f]吲哚掺杂可导致咔唑类衍生物具有ORTP,并展示了不同比例CPhCz/CPhBd(15)异构体掺杂的延迟光致发光光谱[41]
Fig. 2 Milestones in developing carbazole-based ORTP materials during recent years. In 2015, Tang Benzhong et al. observed ORTP with a lifetime of 520 ms from crystalline CzBP[35], Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA. In the same year, Huang and An et al. constructed the first H-aggregation stabilized ORTP molecule DPhCzT, with a lifetime of 1.07 s and a phosphorescent quantum yield of 1.25%[36], Copyright 2015, Macmillan. In 2017, An et al. constructed ORTP molecule CPhCz that can be excited with visible light through adjusting the interaction between molecules on the xy plane, with a lifetime of 847.17 ms and a phosphorescent quantum yield of 8.30%[37], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA. In the same year, Lu et al realized ORTP molecules with high luminescence efficiency by connecting chromophores Cz and heavy atoms with flexible alkylation chain, in which CC6PhBr has an ORTP lifetime of 0.20 s and a phosphorescent quantum yield of 39.47%[38], Copyright 2017, The Royal Society of Chemistry. In 2020, Yang et al. constructed the twisted D-A molecule ChrPh2Cz and achieved ORTP with a lifetime of 511 ms and a phosphorescent quantum yield of 1.50%[39], Copyright 2020, Elsevier B.V. In the same year, An et al prepared CzBBr combining crystalline, D-A structure and heavy-atom effect to achieve a high phosphorescent quantum yield reaching 37.96%[40], Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA. Later, Liu et al proposed that doping carbazole isomer benzo[F]indole can give rise to ORTP from carbazole derivatives, which was demonstrated by the dependence of delayed photoluminescence spectra on CPhCz/CPhBd (15) ratio[41], Copyright 2021, Macmillan
图3 (a)荧光、磷光及长寿命磷光发光过程,其中Exc表示激发,Fluo表示荧光,DF表示延迟荧光,Phos表示磷光,Ultralong Phos表示长寿命磷光,S0表示基态,Sn表示单重激发态,Tn表示三重激发态, T n *表示稳定三重激发态, k r , F为荧光辐射跃迁速率常数,knr,F为荧光非辐射跃迁速率常数,kr,P为磷光辐射跃迁速率常数,knr,P为磷光非辐射跃迁速率常数[36];(b)J-和H-聚集体中的分子取向。E(k)为与每个聚集体中最低的振动带相对应的能量。J-或H-聚集体中,波矢k = 0时的带曲率为正(负)。红点为基态光学允许的激子(k = 0),黑点为|G>。J-聚集体中相邻发色团以头对尾方式取向,导致负激子耦合和光学允许(k = 0),Frenkel激子位于激子带底部。H-聚集体中最近邻发色团以更并排的方式取向,导致正激子耦合和k = 0激子位于激子带顶部。波矢q的无色散(爱因斯坦)声子来源于频率为ω0的分子内振动。因此,电子基态中单声子态和双声子态的能量差为?ω0。箭头表示T = 0 K时的发光路径,在该路径上发光来自最低能量的激子。在J-聚集体中,完全允许的0-0发射导致超辐射。相反,在H-聚集体中,吸收后的快速带内弛豫填充了最低能量的k = π激子,它不能辐射耦合到|G>,从而阻止了0-0发射(假设没有无序)[57];(c)H-聚集体的并行模型、斜交模型、共面倾斜模型、非平面模型的示意图[36]
Fig. 3 (a) Fluorescence, delayed fluorescence, phosphorescence and ultralong phosphorescence processes. Exc, Fluo, DF, Phos and Ultralong Phos denote excitation, fluorescence, delayed fluorescence, phosphorescence and ultralong phosphorescence; S0, Sn, Tn and T n * refer to ground, singlet excited, triplet excited and stabilized triplet excited states, respectively. kr,F, knr,F, kr,F and knr,F are radiative and non-radiative transition rate constants of fluorescence and phosphorescence, respectrively[36], Copyright 2015, Macmillan; (b) Molecular orientations within typical J- and H-aggregates. E(k) gives energy dispersion corresponding to the lowest vibronic band in each aggregate. The band curvature at k = 0 is positive or negative in J- or H-aggregates. The red dot indicates the (k = 0) exciton that is optically allowed from the ground state, |G> (black dot). In J-aggregates, neighboring chromophores are oriented in a head-to-tail way, resulting in a negative excitonic coupling and the placement of the optically allowed (k = 0) Frenkel exciton at the bottom of the exciton band. Conversely, in H-aggregates, the nearest neighbor chromophores are oriented in a more side-by-side way, resulting in a positive excitonic coupling and the placement of the k = 0 exciton at the top of the exciton band. The dispersionless (Einstein) phonons of wave vector q derive from the intramolecular vibrations with frequency ω0. Therefore, energy gap between the one- and two-phonon states within the electronic ground state is equal to ?ω0. Arrows indicate emission pathways at T = 0 K, at which emission originates from the lowest-energy exciton. In J-aggregates, 0-0 emission is strongly allowed, leading to superradiance. In contrast, in H-aggregates, rapid intraband relaxation subsequent to absorption populates the lowest-energy k = π exciton, which cannot radiatively couple to |G>, thereby preventing 0-0 emission (assuming no disorder)[57], Copyright 2015, Macmillan; (c) Schematic representation of parallel, oblique, co-planar inclined and non-planar models for H-aggregation[36]; Copyright 2015, Macmillan
图4 (a)延迟时间(td)为0 ms和0.1 ms的CzBP、BCzBP和DBCzBP晶体的发射光谱;(b)CzBP、BCzBP和DBCzBP晶体在紫外光(Ultravioletray, UV)光照下及CzBP在关闭UV激发光源后的照片[35]
Fig. 4 (a) Emission spectra of CzBP、BCzBP and DBCzBP crystals with delay times (td) of 0 and 0.1 ms; (b) Crystal luminescent photographs of CzBP, BCzBP and DBCzBP under ultraviolet ray (UV) irradiation and CzBP without UV irradiation[35], Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA
图5 (a)延迟时间(td)为0 ms和0.1 ms时的4-MBACz、3-MBACz和2-MBACz晶体的发射光谱;(b)2-MBACz的单晶结构及其中MBA和Cz基团间的扭转角[69];(c)延迟时间(td)为0 ms和0.1 ms时的4-BACz、3-BACz和2-BACz晶体的发射光谱;(d)上述六种晶体即18~23的ФP值比较[70]
Fig. 5 (a) Emission spectra of 4-MBACz, 3-MBACz and 2-MBACz crystals with delay times (td) of 0 and 0.1 ms; (b) Crystal structure of 2-MBACz and the torsion angles between MBA and Cz moieties[69], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA; (c) Emission spectra of the crystals for 4-BACz, 3-BACz and 2-BACz with delay times (td) of 0 and 0.1 ms; (d) Comparison on ФP values of 18~23[70], Copyright 2018, The Royal Society of Chemistry
表1 晶态下室温磷光材料的光物理性质
Table 1 Photophysical properties of ORTP materials under crystalline state
图6 (a)2CzBZL 的四种晶体crst-A~D在室温下及365 nm紫外辐照下的PL光谱和发光照片;(b)crst-A~D的单晶结构及其分子间相互作用[71]
Fig. 6 (a) PL spectra and emissive photographs of four different 2CzBZL crystals (crst-A~D) under 365 nm UV irradiation and at room temperature; (b) Single crystal structures of crst-A~D and intermolecular interactions[71], Copyright 2019, Elsevier B.V.
图7 根据CzPX和CzBX单晶计算的晶胞自由体积[40]
Fig. 7 The calculated free volume region in the single crystal cells of CzPX and CzBX[40], Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA
图8 咔唑类结晶诱导ORTP材料的结构式
Fig. 8 Chemical structures of carbazole-based crystallization-induced ORTP materials
图9 (a)DECzT、DPhCzT、CzDClT和DCzPhP的单晶中形成的H-聚集体;(b)DECzT、DPhCzT、CzDClT和DCzPhP的稳态光致发光(左)和超长磷光(右)光谱。插图显示了激发源关闭前(左)和后(右)拍摄的相应照片;(c)空气、氩气和氧气中365 nm激发的DPhCzT粉末的归一化稳态发光光谱;(d)氩气和氧气气氛中激发的DPhCzT粉末在530和575 nm处的寿命衰变曲线;(e)DPhCzT粉体在530 nm发光强度对时间的依赖性(扫描次数100,开启和关闭激发时间分别为2 s和4 s)[36]
Fig. 9 (a) H aggregates in single crystals of DECzT, CzDClT, DCzPhP and DPhCzT; (b) Steady-state photoluminescence (left) and ultralong phosphorescence (right) spectra of DECzT, CzDClT, DCzPhP and DPhCzT. Insets show the corresponding photographs taken before (left) and after (right) excitation; (c) Normalized steady-state photoluminescence spectra and (d) Lifetime decay curves of DPhCzT powder excited at 365 nm in air, argon, and oxygen, respectively; (e) Time dependency of emission intensity for DPhCzT powder at 530 nm. Scan number was 300, with the excitation switching on and off for 2 and 4 s, respectively[36], Copyright 2015, Macmillan
图10 (a)PhCz、CPhCz和BPhCz在单晶中形成的H-二聚体;(b)可见光LED激发的PhCz、CPhCz和BPhCz的发光光谱和照片[37]
Fig. 10 (a) H-aggregation dimers of PhCz, CPhCz and BPhCz in single crystals; (b) Excitation spectra and photographs of PhCz, CPhCz and BPhCz excited by visible-light LED[37], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KgaA
表2 具有H-聚集的有机室温磷光材料的光物理性质
Table 2 Photophysical properties of carbazole-based ORTP materials featuring H-aggregation
图11 (a) mCNPhCz和(b) mCNPhCz晶体中的H-聚集[75]
Fig. 11 H-aggregation structures in (a) mCNPhCz and (b) mCNPhCz crystals[75], Copyright 2019, The Royal Society of Chemistry
图12 (a)AI-Cz的单晶分子堆积图;(b)AI-N-Cz单晶显示的H-聚集体[78]
Fig. 12 (a) Packing diagram of AI-Cz single crystal; (b) H-aggregates in AI-N-Cz single crystal[78], Copyright 2020, The Royal Society of Chemistry
图13 (a)CBM、CBM-CH3和CBM-OCH3晶体在365 nm紫外光照前后不同时间间隔的发光照片;(b)CBM-OCH3单晶中形成的H-二聚体及分子间相互作用[79]
Fig. 13 (a) Luminescence photographs of CBM, CBM-CH3 and CBM-OCH3 crystals under 365 nm and at different time intervals after UV off; (b) H-aggregation dimers and intermolecular interactions of CBM-OCH3 in single crystals[79], Copyright 2021, The Royal Society of Chemistry
图14 具有H-聚集的咔唑类ORTP材料的结构式
Fig. 14 Chemical structural formula of carbazole-based ORTP materials featuring H-aggregation
图15 (a)44的单晶结构[81];(b)CC4Cl(左)、CC4Br(中)和CC4I(右)晶体在365 nm紫外光下的发光照片;(c)CC2Cl、CC4Cl、CC2Br、CC4Br、CC6Br和CC4I晶体的双分子堆积,红色虚线表示弱相互作用[83]
Fig. 15 (a) Single-crystal structures of 44[81], Copyright 2012, The Royal Society of Chemistry; (b) Emissive photos of CC4Cl (left), CC4Br (middle), and CC4I (right) under 365 nm UV light; (c) Bimolecular packing of CC2Cl, CC4Cl, CC2Br, CC4Br, CC6Br and CC6Br crystals. Red dashed lines denote the weak interactions[83], Copyright 2016, American Chemical Society
图16 (a)CCnBr和CCnPhBr晶体在365 nm下的荧光和磷光量子产率与平均磷光寿命以及发光照片;(b)CC2Br、CC4Br、CC5Br和CC6Br晶体中双分子堆积方式,图中数值为Br/N和两个相邻咔唑之间的距离[38]
Fig. 16 (a) Fluorescence and phosphorescence quantum yields and average phosphorescence lifetimes of CCnBr and CCnPhBr crystals, as well as emissive photos, under 365 nm; (b) Bimolecular packing modes of CC2Br, CC4Br, CC5Br and CC6Br single crystals. The values are the distances for Br/N, and between two adjacent carbazole groups[38], Copyright 2017, The Royal Society of Chemistry
图17 基于重原子效应构建的咔唑类ORTP材料结构式
Fig. 17 Molecular structures of carbazole-based ORTP materials constructed by heavy-atom effect
表3 基于重原子效应构建的咔唑类ORTP材料的光物理性质
Table 3 Photophysical properties of carbazole-based ORTP materials with heavy-atom effect
图18 (a)ChrPh2Cz、ChrPh3Cz和ChrPh4Cz的单晶分子结构;(b)室温空气中365 nm激发下(第一列)及激发后(后续列)以不同时间间隔拍摄的ChrPh2Cz、ChrPh3Cz和ChrPh4Cz晶体发光照片[39]
Fig. 18 (a) Molecular geometries of ChrPh2Cz、ChrPh3Cz and ChrPh4Cz single crystals; (b) Photographs of ChrPh2Cz, ChrPh3Cz and ChrPh4Cz crystals taken at different time intervals under (first column) and after (succeeding columns) 365 nm irradiation at 300 K in air[39], Copyright 2020, Elsevier B.V.
图19 单分子和二聚体DCzB的HOMO和LUMO分布图[90]
Fig. 19 HOMO and LUMO contours of single molecular and dimer DCzB[90], Copyright 2019, Macmillan
图20 计算得出的CzBP和BPy3Cz的基态分子结构[92]
Fig. 20 Calculated ground-state molecular structures of CzBP and BPy3Cz[92], Copyright 2021, Elsevier B.V.
图21 具有D-A结构的咔唑类ORTP材料的分子结构式
Fig. 21 Molecular formula of D-A structured carbazole-based ORTP materials
表4 具有D-A结构的咔唑类ORTP材料的光物理性质
Table 4 Photophysical properties of D-A structured carbazole-based ORTP materials
图22 基于Bd掺杂Cz体系的超长磷光形成机理。左侧为光激发过程中的Bd-Cz之间的两种电荷转移途径。途径I为电子从Bd的LUMO转移到Cz的LUMO;途径II为电子从Bd的HOMO上转移到Cz的HOMO上。中间为Cz自由基阴离子向相邻的Cz扩散形成电荷分离态,而Bd自由基阳离子则被缺陷捕获。右侧为电荷重组(Charge Recombination, CR)产生单重态(如S1)和三重态(如T1)的过程及二者间的ISC[41]
Fig. 22 Proposed mechanism of ultralong phosphorescence fromBd doped Cz systems. Left: two charge transfer channels between Bd and Cz during photoexcitation. Type I: electrons from the LUMO of Bd are transferred to the LUMO of Cz. Type II: electrons from the HOMO of Bd are transferred to the HOMO of Cz. Middle: charge-separated states are formed through Cz radical anions diffusing to neighbouring Cz molecules, whereas Bd radical cations are trapped by defects. Right: singlets (for example, S1) and triplets (for example, T1) are generated through charge recombination (CR), accompanied by ISC between them. Phos. = phosphorescence[41], Copyright 2021, Macmillan
表5 ORTP掺杂体系的光物理性质
Table 5 Photophysical properties of ORTP doping systems
compound λ e x a
(nm)
λ e m b
(nm)
τ P c
(ms)
Φ P d
(%)
k r , P e
(s-1)
k n r , P f
(s-1)
k I S C g
(s-1)
ref
TCz-F(77) Cm 727 7.4 0.12 1.51 1.01×107 96
Lab 515 48.6 0.8 96
TCz-H(78) Cm 128 4.6 1.93 40.08 8.08×106 96
Lab 530 29.9 0.7 96
CNCzBr(80) Lab/Cm Lab 365 550 1.4 98
5∶1 25.6 98
1∶1 38.6 98
1∶5 78.2 98
Cm 162.2 98
CzPyCb(81) Lab/Cm Lab 365 550 39.7 98
3∶1 172.4 98
1∶1 162.3 98
1∶3 170.1 98
Cm 219.4 98
CzPyAm(82) Lab/Cm Lab 365 550 2.3 98
3∶1 14.4 98
1∶1 29.5 98
1∶3 101.1 98
Cm 436.2 98
CzPyCN(83) Lab/Cm Lab 365 550 2.2 98
3∶1 24.5 98
1∶1 351.2 98
1∶3 506.2 98
Cm 744.4 98
CzPyBr(84) Lab/Cm Lab 365 550 8.1 98
3∶1 275.3 98
1∶1 357.5 98
1∶3 788.3 98
Cm 1132.8 98
WAG(85) 300 544 940 5.5 5.9×10-2 1.0 5.6×106 99
320 933 3.5 3.8×10-2 1.0 3.6×106 99
340 923 3.1 3.4×10-2 1.0 3.2×106 99
365 933 3.4 3.6×10-2 1.0 3.5×106 99
380 923 3.3 3.6×10-2 1.0 3.4×106 99
400 922 3.3 3.6×10-2 1.0 3.4×106 99
420 905 3.4 3.8×10-2 1.1 3.5×106 99
440 511 4.1 8.0×10-2 1.9 4.2×106 99
460 88 3.3 3.8×10-2 11.0 3.4×106 99
480 84 8.1 9.6×10-2 10.9 8.3×106 99
图23 WAG的光致发光图片,λex表示激发波长[99]
Fig. 23 PL photographs of WAG, λex is excitation wavelength[99], Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA
图24 ORTP掺杂体系的结构式
Fig. 24 Chemical structures of ORTP doping systems
图25 (a)合成OSNs-T和OSNs-B的自上而下和自下而上路线;(b)具有OSNs皮下包涵体(1.6 × 10-6 mol·L-1)的小鼠的超长磷光和荧光成像,圆圈表示纳米颗粒包涵体的位置[108];(c)4-BACZ、3-BACZ、2-BACZ纳米粒子的体内磷光成像[70];(d)m-PBCM在小鼠前哨淋巴结的体内余辉成像[109]
Fig. 25 (a) Top-down and Bottom-up synthetic routes of OSNs-T and OSNs-B, respectively; (b) Ultralong phosphorescence and fluorescence imaging of a mouse with the subcutaneous inclusions of OSNs (1.6 × 10-6 mol·L-1)[108], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA; (c) In vivo phosphorescence imaging based on 4-BACz, 3-BACz, 2-BACz NPs[70], Copyright 2019, The Royal Society of Chemistry; (d) In vivo afterglow imaging of m-PBCM in mouse sentinel lymph nodes[109], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA
图26 白光照射15min后,用SeDCz NCs对活(绿色)和死(红色)金黄色葡萄球菌进行染色[119]
Fig. 26 Live (green) and dead (red) S. aureus staining with SeDCz NCs after 15min of white light irradiation[119], Copyright 2020, American Chemical Society
图27 应用于生物成像的咔唑类ORTP材料分子结构
Fig.27 Molecular structures of carbazole-based ORTP materials used for biological imaging applications
图28 基于不同ORTP性质构建的高阶加密应用:(a)以具有不同ΦP的m-BrTCz(黑色)和o-BrTCz(灰色)标记的数字“6”及其在紫外和日光下的余辉图案[123];(b)使用BCZBP进行颜色编码和时间分辨应用。蓝色发光来自无定型态,黄色发光及余辉来自晶态[62];(c)由晶态Br-AI-Cz(黄色余辉)、Cl-AI-Cz和F-AI-Cz排列的字符“8”及其在紫外光源撤去前后的发光照片[125];(d)利用CPhCz(可见光可激发)、BPhCz(仅紫外激发)和9AC(无余辉)的ORTP性质差异构建的双重加密应用[37]
Fig. 28 Advanced encryption applications based on the differences of ORTP properties. (a) Number “6” pattern marked by m-BrTCz (black) and o-BrTCz (gray) with differentΦP[123], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA; (b) Color-coded and time-resolved applications based on m-BrTCz. White and yellow emissions were from amorphous and crystalline states[62], Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA; (c) Illustration of the character “8” arranged by Br-AI-Cz with yellow ORTP, Cl-AI-Cz and F-AI-Cz in the crystalline states[125], Copyright 2020, Chinese Chemical Society & SIOC, CAS; (d) Dual-encryption application based on different ORTP properties of visible-light excitable CPhCz, only UV excitable BPhCz and 9AC without ORTP[37], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA.
图29 用于加密应用的咔唑类ORTP材料分子结构
Fig. 29 Molecular structures of carbazole-based ORTP materials used for cryptographic applications
[1]
Lewis G N, Kasha M. J. Am. Chem. Soc., 1944, 66(12): 2100.

doi: 10.1021/ja01240a030     URL    
[2]
Andrews R E, Shah K M, Wilkinson J M, Gartland A. Bone, 2011, 49(4): 717.

doi: 10.1016/j.bone.2011.06.007     URL    
[3]
Collery P, Keppler B, Madoulet C, Desoize B. Crit. Rev. Oncol., 2002, 42(3): 283.

doi: 10.1016/S1040-8428(01)00225-6     URL    
[4]
Haley T J, Komesu N, Colvin G, Koste L, Upham H C. J. Pharm. Sci., 1965, 54(4): 643.

doi: 10.1002/jps.2600540435     URL    
[5]
Haley T J, Koste L, Komesu N, Efros M, Upham H C. Toxicol. Appl. Pharmacol., 1966, 8(1): 37.

doi: 10.1016/0041-008X(66)90098-6     URL    
[6]
Fermi A, Bergamini G, Roy M, Gingras M, Ceroni P. J. Am. Chem. Soc., 2014, 136(17): 6395.

doi: 10.1021/ja501458s     URL    
[7]
Li Y, Gecevicius M, Qiu J R. Chem. Soc. Rev., 2016, 45(8): 2090.

doi: 10.1039/C5CS00582E     URL    
[8]
Kabe R, Adachi C. Nature, 2017, 550(7676): 384.

doi: 10.1038/nature24010     URL    
[9]
Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G. Chem. Soc. Rev., 2014, 43(10): 3259.

doi: 10.1039/C3CS60449G     URL    
[10]
Mills I N, Porras J A, Bernhard S. Acc. Chem. Res., 2018, 51(2): 352.

doi: 10.1021/acs.accounts.7b00375     URL    
[11]
Mukherjee S, Thilagar P. Chem. Commun., 2015, 51(55): 10988.

doi: 10.1039/C5CC03114A     URL    
[12]
Yoshii R, Hirose A, Tanaka K, Chujo Y. J. Am. Chem. Soc., 2014, 136(52): 18131.

doi: 10.1021/ja510985v     URL    
[13]
Spitzer D, Bosch Ten J J. Calcif. Tissue Res., 1976, 20(1): 201.

doi: 10.1007/BF02546408     URL    
[14]
Togashi D M, Nicodem D E. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2004, 60(13): 3205.

doi: 10.1016/j.saa.2004.03.003     URL    
[15]
Zhang G Q, Chen J B, Payne S J, Kooi S E, Demas J N, Fraser C L. J. Am. Chem. Soc., 2007, 129(29): 8942.

doi: 10.1021/ja0720255     URL    
[16]
Shen Q J, Pang X, Zhao X R, Gao H Y, Sun H L, Jin W J. CrystEngComm, 2012, 14(15): 5027.

doi: 10.1039/c2ce25338k     URL    
[17]
Fateminia S M A, Mao Z, Xu S D, Yang Z Y, Chi Z G, Liu B. Angew. Chem. Int. Ed., 2017, 56(40): 12160.

doi: 10.1002/anie.201705945     pmid: 28771963
[18]
Lee D, Bolton O, Kim B C, Youk J H, Takayama S, Kim J. J. Am. Chem. Soc., 2013, 135(16): 6325.

doi: 10.1021/ja401769g     URL    
[19]
Zhang Z Y, Liu Y. Chem. Sci., 2019, 10(33): 7773.

doi: 10.1039/C9SC02633A     URL    
[20]
Zhang Y F, Su Y, Wu H W, Wang Z H, Wang C, Zheng Y, Zheng X, Gao L, Zhou Q, Yang Y, Chen X H, Yang C L, Zhao Y L. J. Am. Chem. Soc., 2021, 143(34): 13675.

doi: 10.1021/jacs.1c05213     URL    
[21]
Bonesi S M, Crevatín L K, Erra-Balsells R. Photochem. Photobiol. Sci., 2004, 3(4): 381.

doi: 10.1039/b315691e     URL    
[22]
Forni A, Lucenti E, Botta C, Cariati E. J. Mater. Chem. C, 2018, 6(17): 4603.

doi: 10.1039/C8TC01007B     URL    
[23]
Xie Y J, Ge Y W, Peng Q, Li C G, Li Q Q, Li Z. Adv. Mater., 2017, 29(17): 1606829.

doi: 10.1002/adma.201606829     URL    
[24]
Huang Q Q, Mei X F, Xie Z L, Wu D B, Yang S M, Gong W J, Chi Z G, Lin Z H, Ling Q D. J. Mater. Chem. C, 2019, 7(9): 2530.

doi: 10.1039/C8TC06202A     URL    
[25]
Mane S K B, Mu Y X, Ubba E, Yang Z Y, Zhao J, Chi Z G. J. Mater. Chem. C, 2019, 7(48): 15219.

doi: 10.1039/C9TC05491J     URL    
[26]
Zhang Z Z, Tang L L, Fan X J, Wang Y H, Zhang K, Sun Q K, Zhang H C, Xue S F, Yang W J. J. Mater. Chem. C, 2018, 6(33): 8984.

doi: 10.1039/C8TC03228A     URL    
[27]
Zhu R H, Xu W T. Anal., 2008, 133(12): 1722.

doi: 10.1039/b804123g     URL    
[28]
Zhao W J, He Z K, Lam J W Y, Peng Q, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang B Z. Chem, 2016, 1(4): 592.

doi: 10.1016/j.chempr.2016.08.010     URL    
[29]
He Z K, Zhao W J, Lam J W Y, Peng Q, Ma H L, Liang G D, Shuai Z G, Tang B Z. Nat. Commun., 2017, 8: 416.

doi: 10.1038/s41467-017-00362-5     URL    
[30]
Kenry, Chen C J, Liu B. Nat. Commun., 2019, 10: 2111.

doi: 10.1038/s41467-019-10033-2     pmid: 31068598
[31]
Feng G X, Zhang G Q, Ding D. Chem. Soc. Rev., 2020, 49(22): 8179.

doi: 10.1039/D0CS00671H     URL    
[32]
Xu D F, Cheng D D, Wang Y, Zhou H K, Liu X L, Han A X, Zhang C. Dyes Pigments, 2020, 172: 107786.

doi: 10.1016/j.dyepig.2019.107786     URL    
[33]
Li K X, Zhao L F, Gong Y Y, Yuan W Z, Zhang Y M. Sci. China Chem., 2017, 60(6): 806.

doi: 10.1007/s11426-016-0460-8     URL    
[34]
Gayathri P, Karthikeyan S, Pannipara M, Al-Sehemi A G, Moon D, Anthony S P. CrystEngComm, 2019, 21(43): 6604.

doi: 10.1039/C9CE01227C     URL    
[35]
Gong Y Y, Chen G, Peng Q, Yuan W Z, Xie Y J, Li S H, Zhang Y M, Tang B Z. Adv. Mater., 2015, 27(40): 6195.

doi: 10.1002/adma.201502442     URL    
[36]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.

doi: 10.1038/nmat4259     URL    
[37]
Cai S Z, Shi H F, Li J W, Gu L, Ni Y, Cheng Z C, Wang S, Xiong W W, Li L, An Z F, Huang W. Adv. Mater., 2017, 29(35): 1701244.

doi: 10.1002/adma.201701244     URL    
[38]
Xue P C, Wang P P, Chen P, Yao B Q, Gong P, Sun J B, Zhang Z Q, Lu R. Chem. Sci., 2017, 8(9): 6060.

doi: 10.1039/C5SC03739E     URL    
[39]
Zheng K L, Yang X M, Ni F, Chen Z X, Zhong C, Yang C L. Chem. Eng. J., 2021, 408: 127309.

doi: 10.1016/j.cej.2020.127309     URL    
[40]
Yin Z, Gu M X, Ma H L, Jiang X Y, Zhi J H, Wang Y F, Yang H F, Zhu W G, An Z F. Angew. Chem. Int. Ed., 2021, 60(4): 2058.

doi: 10.1002/anie.202011830     URL    
[41]
Chen C J, Chi Z G, Chong K C, Batsanov A S, Yang Z, Mao Z, Yang Z Y, Liu B. Nat. Mater., 2021, 20(2): 175.

doi: 10.1038/s41563-020-0797-2     URL    
[42]
Köhler A, Wilson J S, Friend R H. Adv. Eng. Mater., 2002, 4(7): 453.

doi: 10.1002/1527-2648(20020717)4:7【-逻*辑*与-】#x00026;lt;453::AID-ADEM453【-逻*辑*与-】#x00026;gt;3.0.CO;2-G     URL    
[43]
El-Sayed M A. J. Chem. Phys., 1963, 38(12): 2834.

doi: 10.1063/1.1733610     URL    
[44]
Hayduk M, Riebe S, Voskuhl J. Chem. Eur. J., 2018, 24(47): 12221.

doi: 10.1002/chem.201800521     URL    
[45]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y     URL    
[46]
Schulman E M, Parker R T. J. Phys. Chem., 1977, 81(20): 1932.

doi: 10.1021/j100535a010     URL    
[47]
Jelley E E. Nature, 1937, 139(3519): 631.
[48]
Herz A H. Adv. Colloid Interface Sci., 1977, 8(4): 237.

doi: 10.1016/0001-8686(77)80011-0     URL    
[49]
Kasha M, Rawls H R, El-Bayoumi M A. Pure Appl. Chem., 1965, 11(3/4): 371.

doi: 10.1351/pac196511030371     URL    
[50]
Ghosh S, Li X Q, Stepanenko V, Würthner F. Chem. Eur. J., 2008, 14(36): 11343.

doi: 10.1002/chem.200801454     URL    
[51]
Zhao Q Q, Lai H J, Chen H, Li H, He F. J. Mater. Chem. A, 2021, 9(2): 1119.

doi: 10.1039/D0TA11146E     URL    
[52]
Liu G F, Sheng J H, Wu H W, Yang C L, Yang G B, Li Y X, Ganguly R, Zhu L L, Zhao Y L. J. Am. Chem. Soc., 2018, 140(20): 6467.

doi: 10.1021/jacs.8b03309     URL    
[53]
Gao J, Zhao Y Y, You X X, Geng Y, Shan G G, Su Z M, Gao Y. J. Mater. Chem. C, 2022, 10(14): 5425.

doi: 10.1039/D2TC00518B     URL    
[54]
Gao H, Ma X. Aggregate, 2021, 2(4): e38.
[55]
Baroncini M, Bergamini G, Ceroni P. Chem. Commun., 2017, 53(13): 2081.

doi: 10.1039/C6CC09288H     URL    
[56]
Li J Y, Wang G M, Chen X F, Li X, Wu M J, Yuan S, Zou Y L, Wang X P, Zhang K K. Chem - A Eur. J., 2022, 28(35): e202283561.
[57]
Spano F C, Silva C. Annu. Rev. Phys. Chem., 2014, 65: 477.

doi: 10.1146/annurev-physchem-040513-103639     URL    
[58]
El-Sayed M A. J. Chem. Phys., 1963, 38(12): 2834.

doi: 10.1063/1.1733610     URL    
[59]
Yuan J, Chen R F, Tang X X, Tao Y, Xu S, Jin L, Chen C L, Zhou X H, Zheng C, Huang W. Chem. Sci., 2019, 10(19): 5031.

doi: 10.1039/c8sc05198d     pmid: 31183053
[60]
Schmidt K, Brovelli S, Coropceanu V, Beljonne D, Cornil J, Bazzini C, Caronna T, Tubino R, Meinardi F, Shuai Z G, Brédas J L. J. Phys. Chem. A, 2007, 111(42): 10490.

pmid: 17910425
[61]
Brédas J L, Beljonne D, Coropceanu V, Cornil J. Chem. Rev., 2004, 104(11): 4971.

doi: 10.1021/cr040084k     URL    
[62]
Yang Z Y, Mao Z, Zhang X P, Ou D P, Mu Y X, Zhang Y, Zhao C Y, Liu S W, Chi Z G, Xu J R, Wu Y C, Lu P Y, Lien A L, Bryce M R. Angew. Chem. Int. Ed., 2016, 55(6): 2181.

doi: 10.1002/anie.201509224     URL    
[63]
Zhang H Y, Guo Y R, Wu Z B, Wang Y N, Sun Y, Feng X, Wang H Y, Zhao G J. J. Lumin., 2021, 232: 117864.

doi: 10.1016/j.jlumin.2020.117864     URL    
[64]
Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev., 2016, 116(4): 2478.

doi: 10.1021/acs.chemrev.5b00484     URL    
[65]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26(47): 7931.

doi: 10.1002/adma.201402532     URL    
[66]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.

doi: 10.1038/nature11687     URL    
[67]
Im Y, Kim M, Cho Y J, Seo J A, Yook K S, Lee J Y. Chem. Mater., 2017, 29(5): 1946.

doi: 10.1021/acs.chemmater.6b05324     URL    
[68]
Penfold T J, Dias F B, Monkman A P. Chem. Commun., 2018, 54(32): 3926.

doi: 10.1039/C7CC09612G     URL    
[69]
Zhang T T, Wang X, An Z F, Fang Z W, Zhang Y M, Yuan W Z. ChemPhysChem, 2018, 19(18): 2389.

doi: 10.1002/cphc.201800310     URL    
[70]
Zhang T T, Gao H Q, Lv A Q, Wang Z Y, Gong Y Y, Ding D, Ma H L, Zhang Y M, Yuan W Z. J. Mater. Chem. C, 2019, 7(29): 9095.

doi: 10.1039/C9TC02879J     URL    
[71]
He Z H, Li W B, Chen G, Zhang Y M, Yuan W Z. Chin. Chem. Lett., 2019, 30(4): 933.

doi: 10.1016/j.cclet.2019.03.015     URL    
[72]
Xu S, Chen R F, Zheng C, Huang W. Adv. Mater., 2016, 28(45): 9920.

doi: 10.1002/adma.201602604     URL    
[73]
Riebe S, Vallet C, van der Vight F, Gonzalez-Abradelo D, Wöelper C, Strassert C A, Jansen G, Knauer S, Voskuhl J. Chem. Eur. J., 2017, 23(55): 13660.

doi: 10.1002/chem.201701867     URL    
[74]
Gao W C, Su Y, Wang Z H, Zhang Y F, Zhang D, Jia P, Yang C L, Li Y B, Ganguly R, Zhao Y L. ACS Appl. Mater. Interfaces, 2019, 11(50): 47162.

doi: 10.1021/acsami.9b17554     URL    
[75]
Yuan J, Wang S, Ji Y, Chen R F, Zhu Q, Wang Y R, Zheng C, Tao Y, Fan Q L, Huang W. Mater. Horiz., 2019, 6(6): 1259.

doi: 10.1039/c9mh00220k    
[76]
Huang T Y, Jiang W, Duan L. J. Mater. Chem. C, 2018, 6(21): 5577.

doi: 10.1039/C8TC01139G     URL    
[77]
Zhang D D, Song X Z, Cai M H, Kaji H, Duan L. Adv. Mater., 2018, 30(7): 1705406.

doi: 10.1002/adma.201705406     URL    
[78]
Zhang L, Li M, Gao Q Y, Chen C F. Chem. Commun., 2020, 56(31): 4296.

doi: 10.1039/C9CC09636A     URL    
[79]
Fang B, Lai L M, Fan M Y, Yin M Z. J. Mater. Chem. C, 2021, 9(34): 11172.

doi: 10.1039/D1TC02169A     URL    
[80]
Baba M. J. Phys. Chem. A, 2011, 115(34): 9514.

doi: 10.1021/jp111892y     URL    
[81]
Gao H Y, Shen Q J, Zhao X R, Yan X Q, Pang X, Jin W J. J. Mater. Chem., 2012, 22(12): 5336.

doi: 10.1039/c2jm16257a     URL    
[82]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984     pmid: 21336325
[83]
Sun X X, Zhang B C, Li X Y, Trindle C O, Zhang G Q. J. Phys. Chem. A, 2016, 120(29): 5791.

doi: 10.1021/acs.jpca.6b03867     URL    
[84]
Sun X F, Gong H H, Zhang Y X, Tian Y X, Zhang H X, Bai F Q, Wang J, Zhong K L, Kong C P. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 255: 119642.

doi: 10.1016/j.saa.2021.119642     URL    
[85]
Shi H F, Song L L, Ma H L, Sun C, Huang K W, Lv A Q, Ye W P, Wang H, Cai S Z, Yao W, Zhang Y J, Zheng R L, An Z F, Huang W. J. Phys. Chem. Lett., 2019, 10(3): 595.
[86]
Zhang Y Y, Shi Y R, Jia X B, Zhai H S, Liu Y, Wei H L, Liu Y F. Synth. Met., 2020, 265: 116377.

doi: 10.1016/j.synthmet.2020.116377     URL    
[87]
Zhang F Y, Xu Y Y, Zhang W T, Shen W, Li M, He R X. J. Phys. Chem. A, 2017, 121(3): 690.

doi: 10.1021/acs.jpca.6b10754     URL    
[88]
Xia Y F, Du Y Q, Xiang Q, Humphrey M G. New J. Chem., 2021, 45(11): 4930.

doi: 10.1039/D0NJ05713D     URL    
[89]
Serevičius T, Bučiūnas T, Bucevičius J, Dodonova J, Tumkevičius S, Kazlauskas K, Juršėnas S. J. Mater. Chem. C, 2018, 6(41): 11128.

doi: 10.1039/C8TC02554A     URL    
[90]
Jin J B, Jiang H, Yang Q Q, Tang L L, Tao Y, Li Y Y, Chen R F, Zheng C, Fan Q L, Zhang K Y, Zhao Q, Huang W. Nat. Commun., 2020, 11: 842.

doi: 10.1038/s41467-020-14669-3     URL    
[91]
Dias F B, Bourdakos K N, Jankus V, Moss K C, Kamtekar K T, Bhalla V, Santos J, Bryce M R, Monkman A P. Adv. Mater., 2013, 25(27): 3707.

doi: 10.1002/adma.201300753     URL    
[92]
Wang Y N, Guo Y R, Wu Z B, Zhang H Y, Wang C, Zhao G J. J. Mol. Liq., 2021, 326.
[93]
Mao Z, Yang Z, Xu C, Xie Z L, Jiang L, Gu F L, Zhao J, Zhang Y, Aldred M P, Chi Z G. Chem. Sci., 2019, 10(31): 7352.

doi: 10.1039/C9SC02282A     URL    
[94]
Bi X Q, Shi Y G, Peng T, Yue S W, Wang F, Zheng L Y, Cao Q E. Adv. Funct. Mater., 2021, 31(24): 2101312.

doi: 10.1002/adfm.202101312     URL    
[95]
Wang Y H, Zhang Z Z, Liu L X, Yuan S, Ma J, Liu D F, Xue S F, Sun Q K, Yang W J. J. Mater. Chem. C, 2019, 7(31): 9671.

doi: 10.1039/C9TC03444G     URL    
[96]
Feng H T, Zeng J J, Yin P A, Wang X D, Peng Q, Zhao Z J, Lam J W Y, Tang B Z. Nat. Commun., 2020, 11: 2617.

doi: 10.1038/s41467-020-16412-4     URL    
[97]
Xiong Y, Zhao Z, Zhao W J, Ma H L, Peng Q, He Z K, Zhang X P, Chen Y C, He X W, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed., 2018, 57(27): 7997.

doi: 10.1002/anie.201800834     pmid: 29736955
[98]
Qian C, Ma Z M, Yang B X, Li X J, Sun J Y, Li Z W, Jiang H, Chen M X, Jia X R, Ma Z Y. J. Mater. Chem. C, 2021, 9(40): 14294.

doi: 10.1039/D1TC03020E     URL    
[99]
Wang Y G, Sun Q K, Yue L T, Ma J, Yuan S, Liu D F, Zhang H C, Xue S F, Yang W J. Adv. Optical Mater., 2021, 9(21): 2101075.

doi: 10.1002/adom.202101075     URL    
[100]
Rao J H, Dragulescu-Andrasi A, Yao H Q. Curr. Opin. Biotechnol., 2007, 18(1): 17.

doi: 10.1016/j.copbio.2007.01.003     URL    
[101]
Gross S, Gammon S T, Moss B L, Rauch D, Harding J, Heinecke J W, Ratner L, Piwnica-Worms D. Nat. Med., 2009, 15(4): 455.
[102]
Jones K A, Porterfield W B, Rathbun C M, McCutcheon D C, Paley M A, Prescher J A. J. Am. Chem. Soc., 2017, 139(6): 2351.

doi: 10.1021/jacs.6b11737     URL    
[103]
Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135(38): 14125.

doi: 10.1021/ja404243v     URL    
[104]
Li Y, Zhou S F, Li Y Y, Sharafudeen K, Ma Z J, Dong G P, Peng M Y, Qiu J R. J. Mater. Chem. C, 2014, 2(15): 2657.

doi: 10.1039/c4tc00014e     URL    
[105]
Li Z J, Zhang Y W, Wu X, Huang L, Li D S, Fan W, Han G. J. Am. Chem. Soc., 2015, 137(16): 5304.

doi: 10.1021/jacs.5b00872     URL    
[106]
Wu B Y, Wang H F, Chen J T, Yan X P. J. Am. Chem. Soc., 2011, 133(4): 686.

doi: 10.1021/ja108788p     URL    
[107]
Maldiney T, Bessière A, Seguin J, Teston E, Sharma S K, Viana B, Bos A J J, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat. Mater., 2014, 13(4): 418.

pmid: 24651431
[108]
Zhen X, Tao Y, An Z F, Chen P, Xu C J, Chen R F, Huang W, Pu K Y. Adv. Mater., 2017, 29(33): 1606665.

doi: 10.1002/adma.201606665     URL    
[109]
He Z H, Gao H Q, Zhang S T, Zheng S Y, Wang Y Z, Zhao Z H, Ding D, Yang B, Zhang Y M, Yuan W Z. Adv. Mater., 2019, 31(18): 1807222.

doi: 10.1002/adma.201807222     URL    
[110]
Yan X F, Niu G, Lin J, Jin A J, Hu H, Tang Y X, Zhang Y J, Wu A G, Lu J, Zhang S L, Huang P, Shen B Z, Chen X Y. Biomaterials, 2015, 42: 94.

doi: 10.1016/j.biomaterials.2014.11.040     URL    
[111]
Li T W, Li C Y, Ruan Z, Xu P P, Yang X H, Yuan P, Wang Q B, Yan L F. ACS Nano, 2019, 13(3): 3691.

doi: 10.1021/acsnano.9b00452     URL    
[112]
Li X S, Bai H T, Yang Y C, Yoon J, Wang S, Zhang X. Adv. Mater., 2019, 31(5): 1805092.
[113]
Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies R M, Bäumler W. PNAS, 2007, 104(17): 7223.

pmid: 17431036
[114]
Hola K, Zhang Y, Wang Y, Giannelis E P, Zboril R, Rogach A L. Nano Today, 2014, 9(5): 590.

doi: 10.1016/j.nantod.2014.09.004     URL    
[115]
Francés-Soriano L, Zakharko M A, González-Béjar M, Panchenko P A, Herranz-Pérez V, Pritmov D A, Grin M A, Mironov A F, García-Verdugo J M, Fedorova O A, Pérez-Prieto J. Chem. Mater., 2018, 30(11): 3677.

doi: 10.1021/acs.chemmater.8b00276     URL    
[116]
Zhang K Y, Yu Q, Wei H J, Liu S J, Zhao Q, Huang W. Chem. Rev., 2018, 118(4): 1770.

doi: 10.1021/acs.chemrev.7b00425     URL    
[117]
Lv W, Zhang Z, Zhang K Y, Yang H R, Liu S J, Xu A Q, Guo S, Zhao Q, Huang W. Angew. Chem. Int. Ed., 2016, 55(34): 9947.

doi: 10.1002/anie.201604130     URL    
[118]
Zhen X, Qu R, Chen W Z, Wu W, Jiang X Q. Biomater. Sci., 2021, 9(2): 285.

doi: 10.1039/D0BM00819B     URL    
[119]
Xu L T, Zhou K, Ma H L, Lv A Q, Pei D D, Li G P, Zhang Y F, An Z F, Li A, He G. ACS Appl. Mater. Interfaces, 2020, 12(16): 18385.

doi: 10.1021/acsami.0c04005     URL    
[120]
Zhou Y, Han S T, Chen X, Wang F, Tang Y B, Roy V A L. Nat. Commun., 2014, 5: 4720.

doi: 10.1038/ncomms5720     pmid: 25144762
[121]
Xue J C, Zhou Z K, Wei Z Q, Su R B, Lai J, Li J T, Li C, Zhang T W, Wang X H. Nat. Commun., 2015, 6: 8906.

doi: 10.1038/ncomms9906     URL    
[122]
Da Veiga A, Eloff J H P. Inf. Syst. Manag., 2007, 24(4): 361.

doi: 10.1080/10580530701586136     URL    
[123]
Cai S Z, Shi H F, Tian D, Ma H L, Cheng Z C, Wu Q, Gu M X, Huang L, An Z F, Peng Q, Huang W. Adv. Funct. Mater., 2018, 28(9): 1870060.

doi: 10.1002/adfm.201870060     URL    
[124]
Zhang L, Li M, Gao Q Y, Chen C F. Chin. J. Org. Chem., 2020, 40(2): 516.

doi: 10.6023/cjoc201909012     URL    
(张亮, 李猛, 高庆宇, 陈传峰. 有机化学, 2020, 40(2): 516.).

doi: 10.6023/cjoc201909012    
[1] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[2] 苏玉苗, 林海娟, 李文木. 咔唑及其衍生物在蓝光OLED中的应用[J]. 化学进展, 2015, 27(10): 1384-1399.
[3] 林奇,魏太保,姚虹,张有明. 含氮杂环类阴离子受体* [J]. 化学进展, 2009, 21(6): 1207-1216.
[4] 陈苏婷,尤启冬. 吲哚咔唑类化合物及其衍生物的抗肿瘤活性[J]. 化学进展, 2008, 20(0203): 368-374.
阅读次数
全文


摘要

晶态咔唑基有机室温磷光材料