English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1384-1399 DOI: 10.7536/PC150304 前一篇   后一篇

• 综述与评论 •

咔唑及其衍生物在蓝光OLED中的应用

苏玉苗1,2, 林海娟2, 李文木2*   

  1. 1. 福州大学化学学院 福州 350116;
    2. 中国科学院福建物质结构研究所 中国科学院光电材料化学与物理重点实验室 福州 350002
  • 收稿日期:2015-03-01 修回日期:2015-04-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 李文木 E-mail:liwm@fjirsm.ac.cn
  • 基金资助:
    福建省科技重大专项(No.2013HZ0003-2)资助

The Applications of Carbazole and Carbazole-Related Compounds in Blue Emitting Organic Light-Emitting Diodes

Su Yumiao1,2, Lin Haijuan2, Li Wenmu2*   

  1. 1. College of Chemistry, Fuzhou University, Fuzhou 350116, China;
    2. Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received:2015-03-01 Revised:2015-04-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the Fujian Province Major Scientific and Technological Project(No.2013HZ0003-2).
咔唑及其衍生物因其特有的电学性能、电化学性能和光物理性能而被广泛研究。由于这类材料不仅可以作为良好的空穴传输材料,而且在咔唑化合物的不同位置引入电子传输修饰基团,可以使得电子和空穴更加易于注入,并且可以很好地调节两者的平衡,因此,咔唑及其衍生物被认为是一类重要的蓝光荧光材料。咔唑及其衍生物不仅可以以小分子形式应用到蓝光荧光材料、蓝光磷光材料和热致延迟荧光材料,同样可以以高分子形式应用到蓝光荧光材料中。近年来,关于咔唑及其衍生物发光材料的合成及应用成为蓝光OLED研究的热点。本文综述了近年来国内外小分子咔唑及其衍生物作为蓝光有机电致发光主体材料的研究状况,对其分子结构设计光、电子轨道结构、物理性质、热学性质、电化学性质及器件性能等方面作了详细归纳比较,同时归纳了含咔唑结构的聚合物蓝光有机电致发光材料的研究进展,最后展望了咔唑基蓝光有机电致发光主体材料的发展前景和趋势。从光电转换效率及价格方面来说,热致延迟荧光材料和聚合物(含咔唑类基团)发光材料是最具有前景的蓝光OLED材料。
Carbazole and carbazole-related compounds have been studied for their unique electrical, electrochemical and optical-physical properties in the past decades. This kind materials are typical hole transporting unit due to the electron donating character and can be easily modified with electron transport units in different position. Thereby, the injection of electrons and holes simultaneously into deep blue emitters becomes more facility, meanwhile, there is a good balance between electrons and holes. It is believed that carbazole and carbazole-related compounds have great promise as photoelectric functional materials for their photo-physical and fluorescent properties in the blue light region. Carbazole and carbazole-related compounds not only can be used as small molecular in fluorescence materials, phosphorescence materials and thermally activated delayed fluorescence materials, but also as high molecular. Recently, the syntheses of carbazole and carbazole-related materials and their applications have become the highlight in blue emitting organic light-emitting diodes. In this review, we summarize recent progress of small molecular carbazole and carbazole-related materials as organic light emitting materials. The molecular design concept, the electric structure, optical physical properties, thermal stability, electrochemical properties and the properties of carbazole-based OLEDs are reviewed as well.Meanwhile, carbazole-containing polymers OLED materials also be discussed. At last, the perspectives of foreseeable future and trend of development of carbazole-based OLEDs are also presented. Considering the conversion efficiency of electrical-to-optical and the cost of OLED, thermally activated delayed fluorescence (TADF) and polymer light-emitting materials (containing carbazole-based groups) are most attractive tendency to blue OLEDs.

Contents
1 Introduction
2 Small organic molecular carbazole-based blue emitting materials
2.1 Carbazole-based fluorescence materials
2.2 Carbazole-based phosphorescence materials
3 Carbazole-based thermally activated delayed fluorescence materials
4 Carbazole-containing polymers blue emitting materials
4.1 Polymers with pendant carbazolyl moieties
4.2 Polymers containing carbazole moieties in the main chain
5 Conclusion and outlook

中图分类号: 

()
[1] Virgili T, Lidzey D G, Bradley D D C. Adv. Mater., 2000, 12: 58.
[2] Gurin N T, Paksyutov K V, Terent'ev M A, Shirokov A V. Tech. Phys., 2012, 57: 308.
[3] Zhang Y J, Abdelmalek M M A, Wang Q, Aziza H. Appl. Phys. Lett., 2013, 103: 063307.
[4] Aziz H, Popovic Z D, Hu N X, Hor A M, Xu C. Science, 1999, 283: 1900.
[5] Wang Q, Williams G, Aziz H. Org. Electron., 2012, 13: 2075.
[6] Gao C H, Cai S D, Gu W, Zhou D Y, Wang Z K, Liao L S. Appl. Mater. Interfaces, 2012, 4: 5211.
[7] Zhang Y J, Wang Q, Aziz H. Appl. Mater. Interfaces, 2014, 6: 1697.
[8] Liu S W, Huang C A, Lee J H, Yang K H, Chen C C, Chang Y. Thin Solid Films, 2004, 454: 312.
[9] Hsiao C H, Chen Y H, Lin T C, Hsiao C C, Lee J. Appl. Phys. Lett., 2006, 89: 163511.
[10] Popovic Z D, Xie S, Hu N, Hor A, Fork D, Anderson G, Tripp C. Thin Solid Films, 2000, 363: 6.
[11] Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E, Forrest S R. Nature, 2006, 440: 908.
[12] Gong J R, Wan L J, Lei S B, Bai C L. J Phys. Chem. B, 2005, 109: 1675.
[13] Lee J H, Wu M H, Chao C C, Chen H L, Leung M K. Chem. Phys. Lett., 2005, 416: 234.
[14] Meerholz K, Volodin B L, Kippelen S B, Peyghambarian N. Nature, 1994, 371: 497.
[15] Marder S R, Kippelen B, Jen A K Y, Peyghambarian N. Nature, 1997, 388: 845.
[16] Thomas K. R. J, Lin J T, Tao Y T, Ko C W. J. Am. Chem. Soc., 2001, 123: 9404.
[17] Finke A D, Gross D E, Han A, Moore J S. J. Am. Chem. Soc., 2011, 133: 14063.
[18] Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Bellete M, Tao Y, Leclerc M, Durocher G. J. Am. Chem. Soc., 2007, 130: 732.
[19] Albrecht K, Yamamoto K. J. Am. Chem. Soc., 2009, 131: 2244.
[20] Percec V, Glodde M, Bera T K, Miura Y, Shiyanovskaya I, Singer K D, Balagurusamy V S K, Heiney P A, Schnell I, Rapp A, Spiess H W, Hudsonk S D, Duank H. Nature, 2002, 419: 384.
[21] Blanche P A, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh W Y, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. Nature, 2010, 468: 80.
[22] Gao Z, Wang Z, Shan T, Liu Y, Shen F, Pan Y, Zhang H, He X, Lu P, Yang B, Ma Y. Org. Electron., 2014, 15: 2667.
[23] Thomas K R J, Lin J T, Tao Y T, Ko C W. J. Am. Chem. Soc., 2001, 123: 9404.
[24] Lin S L, Chan L H, Lee R H, Yen M Y, Kuo W J, Chen C T, Jeng R J. Adv. Mater., 2008, 20: 3947.
[25] Chen S, Wei J, Wang K, Wang C, Chen D, Liu Y, Wang Y. J. Mater. Chem. C, 2013, 1: 6594.
[26] Curiel D, Mas Montoya M, Usea L, Espinosa A, Orenes R A, Molina P. Org. Lett., 2012, 14: 3360.
[27] Zhao H P, Tao X T, Wang F Z, Ren Y, Sun X Q, Yang J X, Yan Y X, Zou D C, Zhao X, Jiang M H. Chem. Phys. Lett., 2007, 439: 132.
[28] Irgashev R A, Teslenko A Y, Zhilina E F, Schepochkin A V, El'tsov O S, Rusinov G L, Charushin V N. Tetrahedron, 2014, 70: 4685.
[29] Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H. Synth. Met., 2013, 180: 79.
[30] Ting H C, Chen Y M, You H W, Hung W Y, Lin S H, Chaskar A, Chou S H, Chi Y, Liu R H, Wong K T. J Mater. Chem., 2012, 22: 8399.
[31] Simokaitiene J, Stanislovaityte E, Grazulevicius J V, Jankauskas V, Gu R, Dehaen W, Hung Y C, Hsu C P. J. Org. Chem., 2012, 77: 4924.
[32] Ho C L, Chi Li C, Hung W Y, Chen W J, Lin Y C, Wu H, Mondal E, Zhou G J, Wong K T, Wong W Y. J Mater. Chem., 2012, 22: 215.
[33] Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Liu Z W, Lu Z H. Appl. Phys.Lett., 2011, 98: 073310.
[34] Hudson Z M, Wang Z, Helander M G, Lu Z H, Wang S. Adv. Mater., 2012, 24: 2922.
[35] Tsai M H, Lin H W, Su H C, Ke T H, Wu C, Fang F C, Liao Y L, Wong K T, Wu C I. Adv. Mater., 2006, 18: 1216.
[36] Sasabe H, Toyota N, Nakanishi H, Ishizaka T, Pu Y J, Kido J.Adv. Mater., 2012, 24: 3212.
[37] Kim M, Lee J Y. Synth. Met., 2013, 181: 18.
[38] Gao Z Q, Luo M, Sun X H, Tam H L, Wong M S, Mi B X, Xia P F, Cheah K W, Chen C H. Adv. Mater., 2009, 21: 688.
[39] Su S J, Sasabe H, Takeda T, Kido J. Chem. Mater., 2008, 20: 1691.
[40] Park M S, Lee J Y. Chem. Mater., 2011, 23: 4338.
[41] Park M S, Lee J Y, Thin Solid Films, 2013, 548: 603.
[42] Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl. Phys.Lett., 2011, 98: 083302.
[43] Maheswari S, Karthikeyan S, Murugan P, Sridhar P, Pitchumani S. Phys. Chem.Chem. Phys., 2012, 14: 9683.
[44] Serevicius T, Nakagawa T, Kuo M C, Cheng S H, Wong K T, Chang C H, Kwong R C, Xia S, Adachi C. Phys. Chem. Chem. Phys., 2013, 15: 15850.
[45] Mayr C, Lee S Y, Schmidt T D, Yasuda T, Adachi C, Brütting W. Adv. Funct. Mater., 2014, 24: 5232.
[46] Wu S, Aonuma M, Zhang Q, Huang S, Nakagawa T, Kuwabara K, Adachi C. J Mater. Chem. C, 2014, 2: 421.
[47] Gaj M P, Fuentes H C, Zhang Y, Marder S R, Kippelen B. Org. Electron., 2015, 16: 109.
[48] Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C. J. Am. Chem. Soc., 2012, 134: 14706.
[49] Zhang C, von Seggern H, Pakbaz K, Kraabel B, Schmidt H W, Heeger A J. Synth. Met., 1994, 62: 35.
[50] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539.
[51] Wang G, Yuan C, Wu H, Wei Y. J. Appl. Phys., 1995, 78: 2679.
[52] Grazulevicius J V, Soutar I, Swanson L. Macromolecules, 1998, 31: 4820.
[53] Liou G S, Chen H W, Yen H J. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 4108.
[54] Peng Q, Xu J, Li M, Zheng W. Macromolecules, 2009, 42: 5478.
[55] Zhu X, Zhou N, Zhang Z, Sun B, Yang Y, Zhu J, Zhu X. Angew. Chem. Int. Ed., 2011, 50: 6615.
[56] Yin C R, Ye S H, Zhao J, Yi M D, Xie L H, Lin Z Q, Chang Y Z, Liu F, Xu Hi, Shi N E, Qian Y, Huang W. Macromolecules, 2011, 44: 4589.
[57] Liu Y, Chao D, Yao H. Org. Electron., 2014, 15: 1422.
[58] Wang J, Leung L M, So S K, Chan C Y H. Polym. Int., 2014, 63: 363.
[59] Grigoras M, Antonoaia N C. Polym. Int., 2005, 54: 1641.
[60] Gao Y, Hlil A, Wang J, Chen K, Hay A S. Macromolecules, 2007, 40: 4744.
[61] Haussler M, Liu J, Zheng R, Lam J W Y, Qin A, Tang B Z. Macromolecules, 2007, 40: 1914.
[62] Romero D H, Schaer M, Leclerc M, Ades D, Siove A, Zuppiroli L. Synth. Met., 1996, 80.
[63] Kim J K, Hong S I, Cho H N, Kim D Y, Kim C Y. Polym. Bull., 1997, 39: 169.
[64] Kim H K, Ryu M K, Kim K D, Lee J H, Park J W, Cho S W. Synth. Met., 1997, 91: 297.
[65] Song S Y, Jang M S, Shim H K. Macromolecules, 1999, 32: 1482.
[66] Jin S H, Sun Y K, Sohn B H, Kim W. Eur. Polym. J., 2000, 36: 957.
[67] Morin J F, Leclerc M. Macromolecules, 2001, 34: 4680.
[68] Morin J F, Beaupré S, Leclerc M, Lévesque I, D'Iorio M. Appl. Phys. Lett., 2002, 80: 341.
[69] Drolet N, Beaupre S, Morin J F, Tao Ye, Leclerc M. J. Opt. A: Pure Appl. Opt., 2002, 4: S252.
[70] Morin J F, Drolet N, Tao Y, Leclerc M. Chem Mater., 2004, 16: 4619.
[71] Iraqi A, Wataru I. Chem. Mater., 2004, 16: 442.
[72] Cloutet E, Olivero C, Ades D, Castex M C, Siove A. Polymer, 2002, 43: 3489.
[73] Liu Y, Li W, Hlil A R, Matsumura S, Meng Y, Hay A S. J. Macromol. Sci. Part A, 2010, 47: 784.
[74] Liu Y Yu, Li We M, Hlil A R., Meng Y Z, Hay A S. J. Macromol. Sci. Part A, 2010, 47: 1051.
[1] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 密保秀, 王海珊, 高志强, 王旭鹏, 陈润锋, 黄维. 小分子有机电致发光器件和材料的研究及应用[J]. 化学进展, 2011, 23(01): 136-152.
[4] 林奇,魏太保,姚虹,张有明. 含氮杂环类阴离子受体* [J]. 化学进展, 2009, 21(6): 1207-1216.
[5] 陈苏婷,尤启冬. 吲哚咔唑类化合物及其衍生物的抗肿瘤活性[J]. 化学进展, 2008, 20(0203): 368-374.