English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2215-2244 DOI: 10.7536/PC201128 前一篇   后一篇

• 综述 •

中国制氢技术的发展现状

曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波*()   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2020-11-23 修回日期:2021-03-22 出版日期:2021-12-20 发布日期:2021-07-29
  • 通讯作者: 于波
  • 基金资助:
    国家自然科学基金项目(No.91645126和21273128(91645126); 国家自然科学基金项目(No.91645126和21273128(21273128); 清华大学自主科研计划(2018Z05JZY010); 清华-MIT-剑桥低碳能源大学联盟种子基金项目(201LC004)

Current Status of Hydrogen Production in China

Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu()   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2020-11-23 Revised:2021-03-22 Online:2021-12-20 Published:2021-07-29
  • Contact: Bo Yu
  • Supported by:
    the National Natural Science Foundation of China(91645126); the National Natural Science Foundation of China(21273128); the Tsinghua University Initiative Scientific Research Program(2018Z05JZY010); the Tsinghua-MIT-Cambridge Low Carbon Energy University Alliance Seed Fund Program(201LC004)

氢能是一种高效清洁的二次能源,在实现“碳中和”目标中起重要作用。随着制氢规模不断扩大、制氢成本不断降低,氢能将有望与电能共同成为二次能源主体,通过氢电互补推动我国能源结构转型、降低碳排放、保障我国能源安全。目前,我国已成为世界第一大产氢国,主要有三类工业制氢路线:化石燃料重整制氢、工业副产氢和清洁能源电解水制氢。依托清洁能源发展起来的其他制氢新技术,如太阳能光解水制氢、生物质制氢、核能制氢等也受到广泛研究和关注。此外,制氢系统组成复杂,建模和优化难度高,人工智能在制氢系统的预测、评估和优化方面表现出独特的优势,受到国际学者的关注。本文结合最新研究进展,对上述制氢路线的发展情况进行了综述,并通过技术成熟度、经济性和环保性比较,结合国情对我国未来氢气供应结构做出展望。同时,本文综述了人工智能在制氢系统中的最新应用进展,以期为我国制氢工艺发展提供新思路。

Hydrogen energy is an efficient and clean secondary energy that plays an irreplaceable role in realizing "carbon neutral". With the continuous expansion of hydrogen production scale and the reduction in hydrogen production cost, hydrogen energy will become a competitive alternative energy, which can further promote the transformation of China’s energy structure, reduce carbon emissions, and improve China’s energy security and resilience. China is the world’s largest producer of hydrogen, and there are three main industrial hydrogen production routes in China: fossil fuel reforming, industrial by-product hydrogen and the electrolysis of water. Other new hydrogen production technologies, such as hydrogen production from solar photolysis, hydrogen production from biomass, hydrogen production from thermochemical circulation, etc., have attracted extensive attention and investigations. In addition, hydrogen production system is complex, which is difficult for modeling and optimization. Accordingly, artificial intelligence (AI) shows unique advantages in the prediction, evaluation and optimization for hydrogen production system, which is promising and attractive. Based on the recent progress, this article summarizes several critical hydrogen production technologies into four main categories, and further proposes some perspectives for the future development of hydrogen supply structure in China. Finally, this article also reviewes the latest application of artificial intelligence in hydrogen production system to provide new insights for the development of hydrogen production technology in China.

Contents

1 Introduction

2 Hydrogen production from conventional fossil fuel reforming

2.1 Hydrogen production from coal

2.2 Hydrogen production from natural gas

3 Industrial by-product hydrogen

3.1 Pressure swing adsorption

3.2 Low temperature separation

3.3 Membrane separation

3.4 Metal hydride separation

4 Hydrogen production from water electrolysis of clean energy

4.1 AEC

4.2 PEMEC

4.3 SOEC

5 Hydrogen production from other new technologies

5.1 Hydrogen production from solar photolysis of water

5.2 Hydrogen production from biomass fermentation

5.3 Hydrogen production from thermochemical conversion of biomass

5.4 Hydrogen production from thermochemical cycle

6 Comparison of different hydrogen production methods

7 Application of artificial intelligence in hydrogen production system

8 Conclusion and outlook

()
图1 国内外氢能产业链对比
Fig.1 Comparison of hydrogen energy industry chain at home and abroad
表1 煤气化的主要反应
Table 1 The main recation of coal gasification to produce hydrogen
图2 煤气化制氢流程图[15]
Fig.2 The process of coal gasification to produce hydrogen[15]
表2 四种常见气化炉的基本信息
Table 2 Basic information of four common gasifiers
表3 几种典型天然气制氢反应器的主要特点对比[37]
Table 3 Comparison of main characteristics of several typical hydrogen production reactors from natural gas[37]
表4 不同条件下通过实验或理论计算得到的催化剂活性顺序
Table 4 The sequence of catalyst activity obtained by experimental or theoretical calculation under different conditions
图3 我国焦炭企业和氯碱工业历年副产氢量及其总量[61]
Fig.3 The number of the by-product hydrogen from coke enterprises and chlor-alkali industry in China[61]
表5 不同副产氢源的组成成分[62⇓⇓~65]
Table 5 The composition of different by-product hydrogen sources[62⇓⇓~65]
图4 气体膜分离过程及机理:(a)扩散过程;(b)微孔扩散机理;(c)溶解-扩散机理
Fig.4 Gas film separation process and mechanism: (a) diffusion process; (b) microporous diffusion mechanism; (c) solution-diffusion mechanism
表6 不同工业氢气分离方式的不同指标对比[63,87]
Table 6 Comparison of different indicators of different hydrogen separation methods[63,87]
图5 AEC电解原理[104]
Fig.5 AEC electrolysis principle[104]. Copyright 2012, IEEE
图6 电解温度与电解电压的关系[99]
Fig.6 The relationship between electrolytic temperature and electrolytic voltage[99]. Copyright 2009, Elsevier
表7 不同电解效率的计算形式及含义[99]
Table 7 Calculation forms and meanings of different expressions of electrolytic efficiency[99]
表8 电流密度为100 mA/m2的不同氢电极材料电解参数
Table 8 Electrolytic parameters of different hydrogen electrode materials with current density of 100 mA/m2
图7 不同氢电极和氧电极材料超电势随电流密度变化的关系曲线。(a), (b)氢电极;(c), (d)氧电极;(a), (c)T=30 ℃;SS316L:不锈钢(Cr17Ni12Mo2)圆盘电极;Ra-Ni:兰尼镍(Raney Ni,具有高内表面积的多孔镍);电解质溶液:KOH,6 mol/L[106]
Fig.7 Relationship curve of superpotential with current density of different hydrogen electrode & oxygen electrode materials. (a), (b): Hydrogen electrode; (c), (d): oxygen electrode; (a), (c): T=30 ℃; SS316l:Stainless steel (Cr17Ni12Mo2) disk electrode; Ra-Ni:Raney Ni (Raney Ni, porous nickel with high internal surface area); Electrolyte solution:KOH, 6 mol/L[106]
图8 PEMEC的电解原理[104]
Fig.8 Electrolysis principle of PEMEC[104]. Copyright 2012, IEEE
图9 SOEC的组成和基本原理[104]
Fig.9 Composition and basic principles of SOEC[104]. Copyright 2012, IEEE
图10 SOEC中各部分能量随温度的变化关系[134]
Fig.10 The relationship of energy in SOEC with temperature[134]. Copyright 2009, Journal of Tsinghua University (Science and Technology)
图11 不同电解质材料的电导率[135]
Fig.11 Conductivity of different electrolyte materials[135]. Copyright 2008, Royal Society of Chemistry
图12 SOEC的钙钛矿型氧电极材料晶体结构[139]
Fig.12 The crystal structure of perovskite type oxygen electrode material for SOEC[139]. Copyright 2019, Royal Society of Chemistry
图13 钙钛矿的OER比活度随B位阴离子表面的eg轨道填充变化关系[140]
Fig.13 The OER’s specific activity of perovskite varies with the filling of eg orbital on the surface of B anion[140]. Copyright 2011, AAAS
图14 近15年SOEC和SOEC堆的技术进展:(a)不同电解池初始性能比较;(b)SOEC单体衰减性能的提升;(c)SOEC堆测试时长进展;(d)SOEC堆衰减性能的提升[4]
Fig.14 Technical progress of SOEC and SOEC stack in recent 15 years: (a) Comparison of several typical hydroelectrolysis technologies; (b) SOEC monomer attenuation performance improvement; (c) SOEC stack duration tests progress; (d) the corresponding degradation of SOEC stack[4]. Copyright 2020, AAAS
图15 清华大学核研院自主研发设计的SOEC电堆
Fig.15 SOEC stack developed and designed by INET, Tsinghua University
图16 太阳能光解水制氢[171]
Fig.16 Solar photolysis of water to produce hydrogen[171]. Copyright 2019, Elsevier
图17 部分半导体的能带带隙[172]
Fig.17 The band gap of several semiconductors[172]. Copyright 2020, Elsevier
图18 Z型半导体催化剂[178]
Fig.18 Z-type semiconductor catalyst[178]
表9 主要制氢工艺的基本信息比较
Table 9 Basic information of major hydrogen production process
图19 风力制氢系统的基本结构[200]
Fig.19 Basic structure of wind power hydrogen production system[200]。Copyright 2019, SAGE
[1]
Zhiyan consulting. China’s Energy Consumption in the First Three Quarters of 2019, Energy Imports, Energy Market Performance and China’s Total Energy Consumption Forecast Analysis in 2019(智研咨询. 2019年前三季度中国能源消费情况、能源进口情况、能源市场表现情况及2019年中国能源消费总量预测分析). (2019.11.19). [2020.11.17].
[2]
Cao J W, Qin X F, Geng G, Zhang W Q, Yu B. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6):1461.
( 曹军文, 覃祥富, 耿嘎, 张文强, 于波. 石油学报(石油加工), 2021, 37(6):1461.)
[3]
Gernaat D E H J, Boer H S, Daioglou V, Yalew S G, Müller C, Vuuren D P. Nat. Clim. Change, 2021, 11(2): 119.

doi: 10.1038/s41558-020-00949-9     URL    
[4]
Hauch A, Küngas R, Blennow P, Hansen A B, Hansen J B, Mathiesen B V, Mogensen M B. Science, 2020, 370(6513): eaba6118. DOI: 10.1126/science.aba6118

doi: 10.1126/science.aba6118     URL    
[5]
Gan Y.Views on the Development of Hydrogen Energy in China. (干勇. 中国氢能发展的几点思考)(2020. 07.30). [2020.11.17].
[6]
Qing N L M. White Paper on Hydrogen Energy and Fuel cell Industry in China. (氢能联盟.中国氢能源及燃料电池产业白皮书) (2019. 06.29). [2020.11.27].
[7]
Li Y H, Chen J, Liu C S, Yang Y, Li F H, Gong Y L, Liu M H. Plat. Finish., 2019, 41(10): 22.
( 李永恒, 陈洁, 刘城市, 杨云, 李菲晖, 巩运兰, 刘美华. 电镀与精饰. 2019, 41(10): 22.)
[8]
Huang G S, Li J S, Wei S X, Yang Y X, Zhou X Y. Chem. Ind. Eng. Prog., 2019, 38(12): 5217.
( 黄格省, 李锦山, 魏寿祥, 杨延翔, 周笑洋. 化工进展, 2019, 38(12): 5217.)
[9]
Guo L J. Leading the Revolution of Energy Technology and Industrial Transformation with "Orderly Transformation of Energy". Sci. Technol. Rev.
( 郭烈锦. 以“能源有序转化”引领能源技术革命和产业变革. 科技导报.) (2020.07.03). [2020.11.17].
[10]
Peng S P. Hydrogen Energy and Fuel Cell Development Strategy in China.
(彭苏萍. 中国氢能源与燃料电池发展战略研究.) (2020.07.30). [2020.11.17].
[11]
Yi B L.Meet the High Tide of Hydrogen Storage of Water Electrolysis. (衣宝廉. 迎接电解水制氢储能的高潮.)(2020.07.30).[2020.11.17].
[12]
Qi T Z X.China’s Chlor-Alkali Industry Released 250,000 Tons of By-product Hydrogen in 2017, and It is Suggested to Make Full Use of it.(气体咨询. 中国氯碱工业2017年放空25万吨副产氢,建议充分利用.) (2018. 07.13). [2020.11.17].
[13]
Ouyang M G.Hydrogen Strategy for Automotive Applications Should Focus on Green Hydrogen.(欧阳明高. 面向汽车应用的氢能战略应聚焦绿氢.) (2020.07.30). [2020.11.17].
[14]
Qiao C Z, Xiao Y H, Yuan K, Wang F. J. Fo Chem. Ind. Eng., 2004, 55(S1): 34.
( 乔春珍, 肖云汉, 原鲲, 王峰. 化工学报, 2004, 55(S1): 34.)
[15]
Yang X Y, Chen G, Yin H L, Xu J, Zhang S J. Coal Chemical Industry, 2017, 45(06):40.
( 杨小彦, 陈刚, 殷海龙, 徐婕, 张生军. 煤化工, 2017, 45(06):40)
[16]
Bell D. A., Brian F. Coal Gasification and Its Applications. Beijng:Science Press, 2011.(Bell D. A. Brian F. 煤气化及其应用. 北京: 科学出版社, 2011.).
[17]
Wu G G. Coal gasification Technology. Xuzhou:China University of Mining and Technology Press, 2013.(吴国光. 煤炭气化工艺学. 徐州: 中国矿业大学出版社, 2013.).
[18]
Sharman R B, Lacey J A, Scott J E. Coal. Technol. (Houston), 1981, 4.
[19]
Qian X G. Gas & Heat, 1992, (02):18.(钱笑公. 煤气与热力, 1992, (02):18.)
[20]
Chu X L, Miao Y, Fu YL, Zhang Y B, Miao Y W. Technology & Development of Chemical Industry, 2013, 42
( 12:31.(褚晓亮, 苗阳,付玉玲,张玉斌,苗雨旺. 化工技术与开发, 2013, 42(12):31.)
[21]
Ma J, Sun Z P. Journal of Chemical Industry & Engineering, 2008, (03):54.
( 马军, 孙志萍. 化学工业与工程技术, 2008, (03):54.)
[22]
Yang Y, Wei L, Luo C T. Clean Coal Technol., 2013, 19(01):72.
( 杨英, 魏璐, 罗春桃. 洁净煤技术, 2013, 19(01):72.)
[23]
Chen Y, Ren Z Y. Nitrogenous Fertilizer Progress, 2007, (04): 1.(陈英,任照元. 中氮肥, 2007, (04):1.)
[24]
Zhang J T, Cui B, Ding F X. China Petrochem., 2017,(10): 92.
( 张景涛, 崔滨, 丁法效. 中国石油石化, 2017,(10): 92.)
[25]
Shi J G, An X X, Wang S. Sino Glob. Energy, 2020, 25(3): 21.
( 史俊高, 安晓熙, 王帅. 中外能源, 2020, 25(3): 21.)
[26]
Stiegel G J, Ramezan M. Int. J. Coal Geol., 2006, 65(3/4): 173.
[27]
Economic Daily Multimedia Digital Newspape.(经济日报多媒体数字报刊) (2014. 04.28). [2020. 11. 17].
[28]
Xie J D, Li W H, Chen Y F. Clean Coal Technol., 2007, (02):77.
( 谢继东, 李文华, 陈亚飞. 洁净煤技术, 2007, (02):77.)
[29]
Zhang Z, Hu R S, Wu J, Su H Q. Coal Chem. Ind., 2011, 39(4): 13.
( 张喆, 胡瑞生, 武君, 苏海全. 煤化工, 2011, 39(4): 13.)
[30]
Jin H, Lu Y J, Liao B, Guo L J, Zhang X M. Int. J. Hydrog. Energy, 2010, 35(13): 7151.
[31]
Guo L J, Jin H. Int. J. Hydrog. Energy, 2013, 38(29): 12953.
[32]
Ge Z W, Jin H, Guo L J. Int. J. Hydrog. Energy, 2014, 39(34): 19583.
[33]
Wang Y Z, Zhu Y T, Liu Z, Wang L B, Xu D H, Fang C Q, Wang S Z. Int. J. Hydrog. Energy, 2019, 44(7): 3470.
[34]
Jin H, Lu Y J, Zhao L, Guo L J. China Basic Science, 2018, 20(04):4.
( 金辉, 吕友军, 赵亮, 郭烈锦. 中国基础科学, 2018, 20(04):4.)
[35]
Guo L J, Zhao L, Lu Y J, Jin H. J. Eng. Therm., 2017, 38(03):678.
( 郭烈锦, 赵亮, 吕友军, 金辉. 工程热物理学报, 2017, 38(03):678)
[36]
Polaris Hydrogen Net.Supercritical Water Steam Coal: Prevent Coal Burning Pollution from the Source. (北极星氢能网. 超临界水蒸煤:从源头杜绝烧煤污染.)(2019. 10.15). [2020.11.17].
[37]
Maag G, Zanganeh G, Steinfeld A. Int. J. Hydrog. Energy, 2009, 34(18): 7676.
[38]
Chen X. Master’s Dissertation of Dalian University of Technology,2014. (陈曦. 大连理工大学硕士毕业论文. 2014.)
[39]
Liander H. Trans. Faraday Soc., 1929, 25: 462.

doi: 10.1039/tf9292500462     URL    
[40]
Nikolaidis P, Poullikkas A. Renew. Sustain. Energy Rev., 2017, 67: 597.

doi: 10.1016/j.rser.2016.09.044     URL    
[41]
Zhao J, Zhou W, Wang J H, Ma J X. Natural Gas Chemical Industry), 2011, 36(06):53.
( 赵健, 周伟, 汪吉辉, 马建新. 天然气化工, 2011, 36(06):53. )
[42]
Bradford M, Vannice M A. Abstracts of Papers of the American Chemical Society, 1998, 215(1):U481.
[43]
German E D, Sheintuch M. Surf. Sci., 2017, 656: 126.

doi: 10.1016/j.susc.2016.03.024     URL    
[44]
Sebai I, Boulahaouache A, Trari M, Salhi N. Int. J. Hydrog. Energy, 2019, 44(20): 9949.
[45]
Ashik U P M, Wan Daud W M A, Hayashi J I. Renew. Sustain. Energy Rev., 2017, 76: 743.

doi: 10.1016/j.rser.2017.03.088     URL    
[46]
Jia X R. Henan Chem. Ind., 2010, 27(15): 17. (贾秀荣. 河南化工, 2010, 27(15): 17.)
[47]
Chen S H, Zhang K, Chang L P, Wang H. Nat. Gas Chem. Ind., 2019, 44(2): 122.
( 陈思晗, 张珂, 常丽萍, 王辉. 天然气化工, 2019, 44(2): 122.)
[48]
Li P J, Cao J, Wang Y H, Xu H, Zhong J, Liu B. Chemical Industry and Engineering Progress, 2015, 34(6): 1588.
( 李培俊, 曹军, 王元华, 徐宏, 钟杰, 刘波. 化工进展, 2015, 34(6): 1588.)
[49]
Rostrupn. J R. J. Catal., 1973, 31(2):173.

doi: 10.1016/0021-9517(73)90326-6     URL    
[50]
Kikuchi E, Tanaka S, Yamazaki Y, Morita Y. Bull. Japan Petrol. Inst., 1974, 16(2): 95.

doi: 10.1627/jpi1959.16.95     URL    
[51]
Rostrupnielsen J R, Hansen J H B. J. Catal., 1993, 144(1): 38.
[52]
Qin D, Lapszewicz J. Catal. Today, 1994, 21(2/3): 551.

doi: 10.1016/0920-5861(94)80179-7     URL    
[53]
Wei J M, Iglesia E. J. Phys. Chem. B, 2004, 108(13): 4094.

doi: 10.1021/jp036985z     URL    
[54]
Wei J M, Iglesia E. J. Phys. Chem. B, 2004, 108(22): 7253.

doi: 10.1021/jp030783l     URL    
[55]
Wei J M, Iglesia E. J. Catal., 2004, 225(1):116.

doi: 10.1016/j.jcat.2003.09.030     URL    
[56]
Wei J M, Iglesia E. Phys. Chem. Chem. Phys., 2004, 6(13): 3754.

doi: 10.1039/b400934g     URL    
[57]
Wei J M, Iglesia E. Angew. Chem. Int. Ed., 2004, 43(28): 3685.

doi: 10.1002/(ISSN)1521-3773     URL    
[58]
Jones G, Jakobsen J G, Shim S S, Kleis J, Andersson M P, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen J R, Chorkendorff I, Sehested J, Norskov J K. J. Catal., 2008, 259(1):147.

doi: 10.1016/j.jcat.2008.08.003     URL    
[59]
Wei N, Zhang J, Zhong H X, Pan L W, Wang Z Y, Wang J, Zhou Y. J. Nanosci. Nanotechnol., 2019, 19(11): 7416.
[60]
Zhu W G, Wu J D. City Stories, 2018, (7): 1.(朱文革, 吴建栋, 名城绘. 2018, (7):1.)
[61]
Xu R H. Energy Conserv., 2019, 38(2): 110. (徐如辉. 节能, 2019, 38(2): 110.)
[62]
Mao Z Q, Mao Z M, Yu H. Process and Technology of Hydrogen Production. Beijing:Chemical Industry Press, 2018.(毛宗强, 毛志明, 余皓. 制氢工艺与技术, 北京: 化学工业出版社, 2018.).
[63]
Mao Z Q,. Hydrogen Production, and Thermochemical Utilization. Beijing:Chemical Industry Press, 2015.(毛宗强. 氢气生产及热化学利用. 北京: 化学工业出版社, 2015.).
[64]
Li X G. Hydrogen and Hydrogen Energy. Beijing:Machinery Industry Press, 2012.(李星国. 氢与氢能. 北京: 机械工业出版社, 2012.).
[65]
Kong X Z. Liaoning Chemical Industry, 1993, (05): 26.(孔祥芝. 辽宁化工, 1993, (05):26.)
[66]
Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, de Mirodatos C. Chem. Eng. J., 2009, 155(3): 553.

doi: 10.1016/j.cej.2009.09.010     URL    
[67]
Shamsudin I K, Abdullah A, Idris I, Gobi S, Othman M R. Fuel, 2019, 253: 722.

doi: 10.1016/j.fuel.2019.05.029    
[68]
Wei X Q, Chen J. Low Temperature and Specialty, 2002, (03): 1. (魏玺群, 陈健. 低温与特气, 2002, (03):1.)
[69]
Qin Z H. Low Temperature and Specialty, 2005, 23(2):34.(覃中华. 低温与特气, 2005, 23(2):34.)
[70]
Sun H J, Liang G L. Low Temp. Specialty Gases, 1998, 16(1): 30.
( 孙酣经, 梁国仑. 低温与特气, 1998, 16(1): 30.)
[71]
Liu J, Shen G H, Xie K N, Jing D, Zhai M M, Jiang M G, Luo E P. Medical Gasses Engineering, 2018, 3(1):33.
( 刘娟, 申广浩, 谢康宁, 景达, 翟明明, 姜茂刚, 罗二平. 医用气体工程, 2018, 3(1):33. )
[72]
Yuan X X. Master’s Dissertation of Tianjin University of Technology, 2019.(袁晓旭. 天津理工大学硕士论文, 2019)
[73]
Ghosal K, Freeman B D. Polym. Adv. Technol., 1994, 5(11): 673.

doi: 10.1002/pat.1994.220051102     URL    
[74]
Robeson L M. J. Membr. Sci., 1991, 62(2): 165.
[75]
Robeson L M. J. Membr. Sci., 2008, 320(1/2): 390.
[76]
Ahmadizadegan H, Esmaielzadeh S. Polym. Eng. Sci., 2019, 59(S1): E237. DOI: 10.1002/pen.24928

doi: 10.1002/pen.24928     URL    
[77]
Sánchez-Laínez J, Paseta L, Navarro M, Zornoza B, Téllez C, Coronas J. Adv. Mater. Interfaces, 2018, 5(19): 1800647.

doi: 10.1002/admi.v5.19     URL    
[78]
Inde H, Kanezashi M, Nagasawa H, Nakaya T, Tsuru T. ACS Omega, 2018, 3(6): 6369.

doi: 10.1021/acsomega.8b00632     URL    
[79]
Yun S, Oyama S T. J. Membrane Sci., 2011, 375(1/2):28.

doi: 10.1016/j.memsci.2011.03.057     URL    
[80]
Edlund D J. US5393325-A. 1995.
[81]
He D, Li S, Liu X P, Zhang C, Yu Q H, Lei Y, Wang S M, Jiang L J. Int. J. Hydrog. Energy, 2013, 38(22): 9343.
[82]
Itoh N, Suga E T, Sato T. Sep. Purif. Technol., 2014, 121: 46.

doi: 10.1016/j.seppur.2013.05.055     URL    
[83]
Buxbaum R E, Marker T L. J. Membr. Sci., 1993, 85(1): 29.
[84]
Yen P S, Deveau N D, Datta R. AIChE J., 2017, 63(5): 1483.

doi: 10.1002/aic.v63.5     URL    
[85]
Deveau N D, Yen P S, Datta R. Int. J. Hydrog. Energy, 2018, 43(41): 19075.
[86]
Baker J D, Meikrantz D H, Pawelko R J, Anderl R A, Tuggle D G. Fusion Technol., 1995, 27(2T): 8.

doi: 10.13182/FST95-A11963798     URL    
[87]
Li P P, Zhai Y P, Wang X P, Chen F. Nat. Gas Chem. Ind., 2020, 45(3): 115.
( 李佩佩, 翟燕萍, 王先鹏, 陈锋. 天然气化工, 2020, 45(3): 115.)
[88]
China Chemical Industry News.Haohua Technology Won the Bidding for the Large-scale PSA Hydrogen Production Project).(中国化工报. 昊华科技中标大型PSA制氢项目) (2019. 07.10). [2020.11.17].
[89]
China Coal Resources Network.China Plans to Build 15 Integrated Refining and Chemical Projects(中国煤炭资源网. 中国拟在建十五个炼化一体化项目). (2017.10.16). [2020.11.17].
[90]
Guan F Y, Wang J, Wu Y, Zhang J, Chen J. Nat. 张杰Gas Chem. Ind., 2017, 42(6):129.
( 管英富, 王键, 伍毅, 陈健. 天然气化工, 2017, 42(6):129.)
[91]
Liu S J, Liu H A, Liu C Y. China International Hydrogen Energy Conference & Annual meeting of Hydrogen Professional Committee of China Industrial Gas Industry Association, Beijing, 2011. 57. (刘胜君,刘华安,刘春渝.中国国际氢能大会暨中国工业气体工业协会氢气专业委员会年会,北京. 2011. 57.).
[92]
Li X. Doctoral Dissertation of Nanjing University of Technology,2006.(李雪. 南京工业大学博士论文, 2006.)
[93]
Zhao Z, Hu S L, Ye Y M. Nuclear Science and Technology, 2017, 5:124.
( 赵展, 胡石林, 叶一鸣. 核科学与技术, 2017, 5:124.)
[94]
Dong Z F.Annual meeting of China Industrial Gas Industry Association in 2000, China Industrial Gas Industry Association, 2000, 123.
( 董子丰. 中国工业气体工业协会2000年年会, 中国工业气体工业协会, 2000, 123.)
[95]
Fang Y, Zhang W Y, Cao J W, Zhu W L. Conservation and Utilization of Mineral Resources, 2018, (4):34.
( 方圆, 张万益, 曹佳文, 朱龙伟. 矿产保护与利用, 2018, (4):34.)
[96]
Hosseini S E, Wahid M A. Renew. Sustain. Energy Rev., 2016, 57: 850.

doi: 10.1016/j.rser.2015.12.112     URL    
[97]
Bicakova O, Straka P. Int. J. Hydrog. Energy, 2012, 37(16): 11563.
[98]
Xie F, Peng W, Cao J, Feng X, Wei L, Tong J, Li F, Sun K. Radiocarbon, 2019, 61(3): 867.

doi: 10.1017/RDC.2019.6    
[99]
Zeng K, Zhang D. Prog. Energ. Combust., 2011, 37(5):631.

doi: 10.1016/j.pecs.2011.02.002     URL    
[100]
Kreuter W, Hofmann H. Int. J. Hydrogen Energ., 1998, 23(8):661.

doi: 10.1016/S0360-3199(97)00109-2     URL    
[101]
Mazloomi K, Sulaiman N B, Moayedi H. Int. J. Electrochem. Sc., 2012, 7(4):3314.
[102]
Chatterjee S, Peng X, Intikhab S, Zeng G S, Kariuki N N, Myers D J, Danilovic N, Snyder J. Adv. Energy Mater., 2021, 11(34): 2101438.

doi: 10.1002/aenm.v11.34     URL    
[103]
Pandiyan A, Uthayakumar A, Subrayan R, Cha S W, Krishna Moorthy S B. Nanomater. Energy, 2019, 8(1): 2.

doi: 10.1680/jnaen.18.00009     URL    
[104]
Ursua A, Gandia L M, Sanchis P. Proc. IEEE, 2012, 100(2): 410.

doi: 10.1109/JPROC.2011.2156750     URL    
[105]
Berg H. Bioelectrochemistry Bioenerg., 1993, 32(2): 200.
[106]
Colli A N, Girault H H, Battistel A. Materials, 2019, 12: 1336.

doi: 10.3390/ma12081336     URL    
[107]
Ahn S H, Park H Y, Choi I, Yoo S J, Hwang S J, Kim H J, Cho E A, Yoon C W, Park H, Son H. Int. J. Hydrogen Energ., 2013, 38(31):13493.

doi: 10.1016/j.ijhydene.2013.07.103     URL    
[108]
Yu L P, Lei T, Nan B, Jiang Y, He Y H, Liu C T. Energy, 2016, 97: 498.

doi: 10.1016/j.energy.2015.12.138     URL    
[109]
Wang K C, Xia M, Xiao T, Lei T, Yan W S. Mater. Chem. Phys., 2017, 186: 61.

doi: 10.1016/j.matchemphys.2016.10.029     URL    
[110]
Fan C L, Piron D L, Meilleur M, Marin L P. Can. J. Chem. Eng., 1993, 71(4): 570.

doi: 10.1002/cjce.v71:4     URL    
[111]
Hong S H, Ahn S H, Choi I, Pyo S G, Kim H J, Jang J H, Kim S K. Appl. Surf. Sci., 2014, 307: 146.

doi: 10.1016/j.apsusc.2014.03.197     URL    
[112]
Brennecke P W, Ewe H H. Energy Convers. Manag., 1991, 31(6): 585.

doi: 10.1016/0196-8904(91)90093-X     URL    
[113]
Ju D L D.Current Status of Electrolytic Hydrogen Production and Hydrogen Energy Storage in China.(钜大锂电. 国内电解制氢与氢储能发展现状) (2020. 02.21). [2020.11.17].
[114]
Polaris Hydrogen Net. Bottleneck of Renewable Energy Hydrogen Production and Countermeasures. (北极星氢能网. 可再生能源制氢瓶颈和对策)(2020. 01.20). [2020.11.17].
[115]
Gaogong Lithium Electricity.What are the Highlights of Suzhou Jingli 1000m3/h Hydrolycsis Hydrogen Production Equipment.(高工锂电网. 苏州竞立1000m3/h水电解制氢设备亮点在哪?) (2018. 11.09). [2020.11.17].
[116]
China Science Daily. A new generation of electrolytic water catalyst was developed by Dalian Institute of Chemical Engineering,CAS(中国科学报. 中科院大连化物所开发出新一代电解水催化剂). (2019. 09.03). [2020.11.17].
[117]
Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Int. J. Hydrog. Energy, 2017, 42(52): 30470.
[118]
Miles M H, Thomason M A. J. Electrochem. Soc., 1976, 123(10): 1459.
[119]
Carmo M, Fritz D L, Mergel J, Stolten D. Int. J. Hydrog. Energy, 2013, 38(12): 4901.
[120]
Marshall A T, Sunde S, Tsypkin M, Tunold R. Int. J. Hydrog. Energy, 2007, 32(13): 2320.
[121]
Alia S M, Shulda S, Ngo C, Pylypenko S, Pivovar B S. ACS Catal., 2018, 8(3): 2111.

doi: 10.1021/acscatal.7b03787     URL    
[122]
Zeng Y C, Guo X Q, Shao Z G, Yu H M, Song W, Wang Z Q, Zhang H J, Yi B L. J. Power Sources, 2017, 342: 947.
[123]
Li D, Song T, Kang J, Liu Y. Chinese Journal of Power Sources, 2016, 40: 2084.
[124]
Rikukawa M, Sanui K. Prog. Polym. Sci., 2000, 25(10): 1463.

doi: 10.1016/S0079-6700(00)00032-0     URL    
[125]
Chen J, Yu J, Zhang M. Chem. Ind. Eng. Prog., 2017, 36: 3743.
[126]
Hazarika M, Jana T. Eur. Polym. J., 2013, 49(6): 1564.

doi: 10.1016/j.eurpolymj.2013.01.028     URL    
[127]
Zhang P C, Hao C M, Han Y T, Du F M, Wang H Y, Wang X Y, Sun J C. Surf. Coat. Technol., 2020, 397: 126064.

doi: 10.1016/j.surfcoat.2020.126064     URL    
[128]
Wilberforce T, El Hassan Z, Ogungbemi E, Ijaodola O, Khatib F N, Durrant A, Thompson J, Baroutaji A, Olabi A G. Renew. Sustain. Energy Rev., 2019, 111: 236.

doi: 10.1016/j.rser.2019.04.081     URL    
[129]
Kopp M, Coleman D, Stiller C, Scheffer K, Aichinger J, Scheppat B. Int. J. Hydrog. Energy, 2017, 42(19): 13311.
[130]
Cong Y Y, Yi B L, Song Y J. Nano Energy, 2018, 44: 288.

doi: 10.1016/j.nanoen.2017.12.008     URL    
[131]
China National Chemical Industry Journal.Hebei Guyuan Wind Power Hydrogen Production Comprehensive Utilization Demonstration Project started construction. (中国化工报. 河北沽源风电制氢综合利用示范项目开建)(2015. 04.15). [2020.11.17].
[132]
Liang M D.Doctoral Dissertation of Northeastern University), 2009.(梁明德. 东北大学博士论文, 2009.).
[133]
Liu M Y, Yu B, Xu J M. J. Tsinghua Univ. Sci. Technol., 2009, 49(6): 868. 刘明义, 于波, 徐景明. 清华大学学报(自然科学版), 2009, 49(6): 868. (in Chinese)
[134]
Zhang W Q, Yu B, Chen J, Xu J M. Prog. Chem., 2008, (05):778.
( 张文强, 于波, 陈靖, 徐景明. 化学进展, 2008, (05):778.)
[135]
Brett D J L, Atkinson A, Brandon N P, Skinner S J. Chem. Soc. Rev., 2008, 37(8): 1568.

doi: 10.1039/b612060c     URL    
[136]
Han M F, Peng S P. Materials and preparation of solid oxide fuel cell. Beijing:Science Press, 2004.(韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备, 北京: 科学出版社, 2004.).
[137]
Liu X L, Ma J F, Liu W H, Xu G, Li H J, Yang L L. Bull. Thechinese Ceram. Soc., 2001, 20(1): 24.
( 刘旭俐, 马峻峰, 刘文化, 徐刚, 李海舰, 杨琳琳. 硅酸盐通报, 2001, 20(1): 24.)
[138]
Marr M, Kuhn J, Metcalfe C, Harris J, Kesler O. J. Power Sources, 2014, 245: 398.
[139]
Zheng Y, Wang J C, Yu B, Zhang W Q, Chen J, Qiao J L, Zhang J J. Chem. Soc. Rev., 2017, 46(5): 1427.

doi: 10.1039/c6cs00403b     pmid: 28165079
[140]
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334(6061): 1383.

doi: 10.1126/science.1212858     pmid: 22033519
[141]
Tsvetkov N, Lu Q Y, Chen Y, Yildiz B. ACS Nano, 2015, 9(2): 1613.

doi: 10.1021/nn506279h     pmid: 25651454
[142]
Zhu Y M, Zhong X, Jin S G, Chen H J, He Z Y, Liu Q Y, Chen Y. J. Mater. Chem. A, 2020, 8(21): 10957.
[143]
Shimada H, Yamaguchi T, Kishimoto H, Sumi H, Yamaguchi Y, Nomura K, Fujishiro Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[144]
Chen Y, Chen Y, Ding D, Ding Y, Choi Y, Zhang L, Yoo S, Chen D C, de Glee B, Xu H, Lu Q Y, Zhao B T, Vardar G, Wang J Y, Bluhm H, Crumlin E J, Yang C H, Liu J, Yildiz B, Liu M L. Energy Environ. Sci., 2017, 10(4): 964.

doi: 10.1039/C6EE03656B     URL    
[145]
Kim S D, Moon H, Hyun S H, Moon J, Kim J, Lee H W. Solid State Ion., 2006, 177(9/10): 931.

doi: 10.1016/j.ssi.2006.02.007     URL    
[146]
Høgh J. Doctoral Dissertation of the Technical University of Denmark, 2005.
[147]
Neagu D, Oh T S, Miller D N, Ménard H, Bukhari S M, Gamble S R, Gorte R J, Vohs J M, Irvine J T S. Nat. Commun., 2015, 6(1): 1.
[148]
Wu T, Zhang W Q, Li Y F, Zheng Y, Yu B, Chen J, Sun X M. Adv. Energy Mater., 2018, 8(33): 1802203.

doi: 10.1002/aenm.v8.33     URL    
[149]
Kim S J, Kim K J, Choi G M. J. Power Sources, 2015, 284: 617.
[150]
Ren Y Y, Ma J T, Zan Q F, Lin X P, Zhang Y, Deng C S. J. Chin. Ceram. Soc., 2011, 39(7): 1067.
( 任耀宇, 马景陶, 昝青峰, 林旭平, 张勇, 邓长生. 硅酸盐学报, 2011, 39(7): 1067.)
[151]
O’Brien J E, Stoots C M, Herring J S, Hartvigsen J. J. Fuel Cell Sci. Technol., 2006, 3(2): 213.
[152]
Zhang X Y, O’Brien J E, Tao G, Zhou C, Housley G K. J. Power Sources, 2015, 297: 90.
[153]
Brien J O, Boardman R. High Temperature Electrolysis Test Stand. Idaho National Laboratory, (2018. 06.14). [2020.11.17].
[154]
Yan Y, Fang Q, Blum L, Lehnert W. Electrochimica Acta, 2017, 258: 1254.

doi: 10.1016/j.electacta.2017.11.180     URL    
[155]
Lin J, Miao G S, Xia C R, Chen C S, Wang S R, Zhan Z L. J. Am. Ceram. Soc., 2017, 100(8): 3794.

doi: 10.1111/jace.2017.100.issue-8     URL    
[156]
Wan Y H, Xing Y L, Xu Z Q, Xue S S, Zhang S W, Xia C R. Appl. Catal. B: Environ., 2020, 269: 118809.

doi: 10.1016/j.apcatb.2020.118809     URL    
[157]
Yang Y, Li S, Yang Z, Chen Y, Zhang P, Wang Y, Chen F, Peng S. J. Appl. Catal. B-Environ., 2020, 167:0845038.
[158]
Zhang Z B, Zhu Y L, Zhong Y J, Zhou W, Shao Z P. Adv. Energy Mater., 2017, 7(17): 1700242.

doi: 10.1002/aenm.201700242     URL    
[159]
Li F, Li Y F, Chen H J, Li H, Zheng Y, Zhang Y P, Yu B, Wang X W, Liu J, Yang C H, Chen Y, Liu M L. ACS Appl. Mater. Interfaces, 2018, 10(43): 36926.

doi: 10.1021/acsami.8b11877     URL    
[160]
Zhao C H, Li Y F, Zhang W Q, Zheng Y, Lou X M, Yu B, Chen J, Chen Y, Liu M L, Wang J C. Energy Environ. Sci., 2020, 13(1): 53.

doi: 10.1039/C9EE02230A     URL    
[161]
Li Y F, Zhang W Q, Zheng Y, Chen J, Yu B, Chen Y, Liu M L. Chem. Soc. Rev., 2017, 46(20): 6345.

doi: 10.1039/C7CS00120G     URL    
[162]
Zheng Y, Li Y F, Wu T, Zhao C H, Zhang W Q, Zhu J X, Li Z P, Chen J, Wang J C, Yu B, Zhang J J. Nano Energy, 2019, 62: 521.

doi: 10.1016/j.nanoen.2019.05.069    
[163]
Zhang W Q, Yu B. Journal of Electrochemistry, 2020, 26(02):212.
( 张文强, 于波. 电化学, 2020, 26(02):212.)
[164]
Posdziech O, Schwarze K, Brabandt J. Int. J. Hydrog. Energy, 2019, 44(35): 19089.
[165]
Mogensen M B, Chen M, Frandsen H L, Graves C, Hansen J B, Hansen K V, Hauch A, Jacobsen T, Jensen S H, Skafte T L, Sun X. Clean Energy, 2019, 3(3): 175.

doi: 10.1093/ce/zkz023     URL    
[166]
Agency I E. Technology Roadmap: Hydrogen and Fuel Cells, 2015, [2020. 11.17].
[167]
Dotan H, Landman A, Sheehan S W, Malviya K D, Shter G E, Grave D A, Arzi Z, Yehudai N, Halabi M, Gal N, Hadari N, Cohen C, Rothschild A, Grader G S. Nat. Energy, 2019, 4(9): 786.

doi: 10.1038/s41560-019-0462-7    
[168]
Khatib F N, Wilberforce T, Ijaodola O, Ogungbemi E, El-Hassan Z, Durrant A, Thompson J, Olabi A G. Renew. Sustain. Energy Rev., 2019, 111: 1.

doi: 10.1016/j.rser.2019.05.007     URL    
[169]
Wu W, Ding H P, Zhang Y Y, Ding Y, Katiyar P, Majumdar P K, He T, Ding D. Adv. Sci., 2018, 5(11): 1870070.

doi: 10.1002/advs.v5.11     URL    
[170]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0     URL    
[171]
Kumaravel V, Mathew S, Bartlett J, Pillai S C. Appl. Catal. B: Environ., 2019, 244: 1021.

doi: 10.1016/j.apcatb.2018.11.080     URL    
[172]
Kahng S, Yoo H, Kim J H. Adv. Powder Technol., 2020, 31(1): 11.

doi: 10.1016/j.apt.2019.08.035     URL    
[173]
Khan S, Al-Shahry M, Ingler W B. Science, 2002, 297(5590):2243.

doi: 10.1126/science.1075035     URL    
[174]
Razavi-Khosroshahi H, Edalati K, Wu J, Nakashima Y, Arita M, Ikoma Y, Sadakiyo M, Inagaki Y, Staykov A, Yamauchi M, Horita Z, Fuji M. J. Mater. Chem. A, 2017, 5(38): 20298.
[175]
Yuan Y J, Chen D Q, Yu Z T, Zou Z G. J. Mater. Chem. A, 2018, 6(25): 11606.
[176]
Meyer T J. Acc. Chem. Res., 1989, 22(5): 163.

doi: 10.1021/ar00161a001     URL    
[177]
Li R G, Zhao Y, Li C. Faraday Discuss., 2017, 198: 463.

doi: 10.1039/C6FD00199H     URL    
[178]
Li H J, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 3(11): 1500389.

doi: 10.1002/advs.v3.11     URL    
[179]
Hill R, Bendall F. Nature, 1960, 186(4719): 136.

doi: 10.1038/186136a0     URL    
[180]
Wang Z, Li C, Domen K. Chem. Soc. Rev., 2019, 48(7): 2109.

doi: 10.1039/C8CS00542G     URL    
[181]
Yang L, Li X Y, Zhang G Z, Cui P, Wang X J, Jiang X, Zhao J, Luo Y, Jiang J. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6     URL    
[182]
Xie Y P, Wang G S, Zhang E L, Zhang X. Chin. J. Inorg. Chem., 2017, 33(2): 177.
( 谢英鹏, 王国胜, 张恩磊, 张翔. 无机化学学报, 2017, 33(2): 177.)
[183]
Balat H, Kırtay E. Int. J. Hydrog. Energy, 2010, 35(14): 7416.
[184]
Ni M, Leung D Y C, Leung M K H, Sumathy K. Fuel Process. Technol., 2006, 87(5): 461.

doi: 10.1016/j.fuproc.2005.11.003     URL    
[185]
Soares J F, Confortin T C, Todero I, Mayer F D, Mazutti M A. Renew. Sustain. Energy Rev., 2020, 117: 109484.

doi: 10.1016/j.rser.2019.109484     URL    
[186]
Mona S, Kumar S S, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A. Sci. Total. Environ., 2020, 728: 138481.

doi: 10.1016/j.scitotenv.2020.138481     URL    
[187]
Hasnaoui S, Pauss A, Abdi N, Grib H, Mameri N. Int. J. Hydrog. Energy, 2020, 45(11): 6231.
[188]
Ren N Q. Principle and Technology of biological hydrogen production by fermentation, Science Press. Beijing:Science Press, 2017.(任南琪. 发酵法生物制氢原理与技术. 北京: 科学出版社, 2017.).
[189]
Cao L C, Yu I K M, Xiong X N, Tsang D C W, Zhang S C, Clark J H, Hu C W, Ng Y H, Shang J, Ok Y S. Environ. Res., 2020, 186: 109547.

doi: 10.1016/j.envres.2020.109547     URL    
[190]
Zhang H L, Liu L, Gao J, Wang X. Gas Heat, 2019, 39(10): 24.)
( 张海梁, 刘璐, 高峻, 王逊. 煤气与热力, 2019, 39(10): 24.)
[191]
El-Emam R S, Özcan H. J. Clean. Prod., 2019, 220: 593.
[192]
Dehghani S, Sayyaadi H. Int. J. Hydrog. Energy, 2013, 38(22): 9074.
[193]
Ping Z, Laijun W, Songzhe C, Jingming X. Renew. Sust. Energ. Rev., 2018, 81:1802.

doi: 10.1016/j.rser.2017.05.275     URL    
[194]
Zhou C, Chen S, Wang L, Zhang P. Ind. Eng. Chem. Res., 2018, 57: 7717.

doi: 10.1021/acs.iecr.8b01658     URL    
[195]
Shan T W, Song P F, Li Y W, Hou J G, Wang X L, Zhang D. Nat. Gas Chem. Ind., 2020, 45(1): 85.
( 单彤文, 宋鹏飞, 李又武, 侯建国, 王秀林, 张丹. 天然气化工, 2020, 45(1): 85.)
[196]
Yahua consulting.China Hydrogen Energy Industry Chain Annual Report 2019.(亚化咨询. 中国氢能产业链年度报告2019) (2019. 06.21). [2020.11.17].
[197]
Dawood F, Anda M, Shafiullah G M. Int. J. Hydrog. Energy, 2020, 45(7): 3847.
[198]
Xie X S, Yang W J, Shi W, Zhang S S, Wang Z H, Zhou J H. Chem. Ind. Eng. Prog., 2018, 37(6): 2147.
( 谢欣烁, 杨卫娟, 施伟, 张圣胜, 王智化, 周俊虎. 化工进展, 2018, 37(6): 2147.)
[199]
Chang P L, Hsu C W, Chang P C. Int. J. Hydrog. Energy, 2011, 36(21): 14172.
[200]
Li Z, Guo P, Han R H, Sun H X. Energy Explor. Exploitation, 2019, 37(1): 5.
[201]
Guo P, Wang K, Luo A L, Xue M. Journal of Software, 2015, 26(11):3010.
( 郭平, 王可, 罗阿理, 薛明志. 软件学报, 2015, 26(11):3010.)
[202]
Ardabili S F, Najafi B, Shamshirband S, Bidgoli B M, Deo R C, Chau K. Eng. Appl. Comp. Fluid., 2018, 12(1):438.
[203]
Yilmaz C. Geothermics, 2017, 65: 32.
[1] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[2] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[3] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[4] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[5] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[6] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[7] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[8] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[9] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[10] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[11] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[12] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[13] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.
[14] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
[15] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
阅读次数
全文


摘要

中国制氢技术的发展现状