English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1535-1546 DOI: 10.7536/PC200304 前一篇   后一篇

• 综述 •

硝酰氯的大气化学

王海潮1, 唐明金2, 谭照峰3, 彭超2, 陆克定1,**()   

  1. 1.北京大学环境科学与工程学院 环境模拟与污染控制国家重点联合实验室 北京 100871
    2.中国科学院广州地球化学研究所 有机地球化学国家重点实验室 广东省环境保护与资源利用重点实验室 广州 510640
  • 收稿日期:2020-03-04 修回日期:2020-04-07 出版日期:2020-10-24 发布日期:2020-07-02
  • 通讯作者: 陆克定
  • 基金资助:
    国家自然科学基金项目(41907185); 国家自然科学基金项目(91744204); 国家自然科学基金项目(21976006); 国家重点研发计划(2018YFC0213901); 中国博士后科学基金会项目资助(2018M641095); 中国博士后科学基金会项目资助(2019T120023)

Atmospheric Chemistry of Nitryl Chloride

Haichao Wang1, Mingjin Tang2, Zhaofeng Tan3, Chao Peng2, Keding Lu1,**()   

  1. 1. State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
    2. State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2020-03-04 Revised:2020-04-07 Online:2020-10-24 Published:2020-07-02
  • Contact: Keding Lu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(41907185); National Natural Science Foundation of China(91744204); National Natural Science Foundation of China(21976006); National Key Research and Development Program of China(2018YFC0213901); China Postdoctoral Science Foundation(2018M641095); China Postdoctoral Science Foundation(2019T120023)

硝酰氯(nitryl chloride,ClNO2)是大气中一种重要的气态污染物,对大气氧化性、一次污染物的降解和二次污染物的生成具有重要影响,并在全球氮循环和氯循环中扮演着不可忽视的角色。本文归纳了ClNO2的基本物理化学性质及其在大气中的生成和去除机制,并介绍了实验室研究和外场观测中ClNO2的主要测量方法。在此基础上,本文总结了过去十几年报道的ClNO2在实际大气中的时空分布特征,通过分析实验室模拟和外场观测的研究结果系统讨论了ClNO2非均相生成的机制、产率及其影响因素,探讨了ClNO2对氯自由基、大气氧化性以及臭氧和硝酸盐形成的影响。我们指出,ClNO2既耦合了气相化学和非均相化学,又耦合了夜间大气化学和日间光化学,在我国大气复合污染中可能起着非常重要的作用。最后,本文提出了ClNO2大气化学研究中尚待解决的关键科学问题,并简要讨论了该领域的未来发展方向。

As an important reactive trace gases in the troposphere, nitryl chloride (ClNO2) has significant impacts on atmospheric oxidation capacity, the degradation of primary pollutants and the formation of secondary pollutants, and plays indispensable roles in global cycles of both nitrogen and chlorine. In this paper, we introduce basic properties of ClNO2 as well as its formation and removal mechanisms in the troposphere, and describe in brief techniques currently used in laboratory and field work to measure ClNO2. In addition, we review spatial and temporal distributions of tropospheric ClNO2 over the globe as reported in the last 10~20 years, discuss in a systematical manner chemical mechanisms and environmental factors which determine its heterogeneous formation in the atmosphere via critical analysis of important results from laboratory studies and field measurements, and summarize impacts of ClNO2 on chlorine radicals, atmospheric oxidation capacity as well as the formation of O3 and nitrate aerosol. We emphasize that ClNO2 couples gas phase chemistry and heterogeneous chemistry, and also couples nocturnal atmospheric chemistry with daytime photochemistry, thus very likely playing an important role in the formation of air pollution complex in China. Important questions which remain to be answered to better understand atmospheric chemistry of ClNO2 are outlined at the end, and we also discuss in brief how these questions can be addressed in future work.

Contents

1 Introduction

2 Source and sink of ClNO2

2.1 Source

2.2 Sink

3 Measurement techniques of ClNO2

3.1 Direct measurement technique

3.2 Indirect measurement technique

3.3 Calibration

4 ClNO2 distribution and its environmental impacts

4.1 Spatial and temporal distribution

4.2 ClNO2 formation and yield

4.3 Environmental impacts

5 Conclusion and outlook

()
图1 ClNO2大气化学反应机制框架(其中化学反应式表示ClNO2的非均相生成机制)
Fig.1 The framework of atmospheric chemistry of ClNO2 (the equations inserted describe formation mechanisms of ClNO2 via heterogeneous reactions)
图2 ClNO2和Cl2的光谱吸收截面(200~500 nm)
Fig.2 Absorption cross sections (200~500 nm) of ClNO2 and Cl2
图3 IClNO2-信号强度与水蒸气分压的关系[22]
Fig.3 The dependence of signal intensities of IClNO2- on the partial pressure of H2O[22]
表1 文献报道的国内外外场观测ClNO2浓度以及ClNO2产率的结果汇总
Table 1 Summary of the results of field observations of ClNO2 concentration and ClNO2 yield reported in the literatures
图4 北京夏季观测的ClNO2典型日变化
Fig.4 A case of diurnal variation of ClNO2 in field observation in summer Beijing
图5 外场观测的ClNO2的垂直廓线分布[40]
Fig.5 A case of vertical profile of ClNO2 in field observation[40]
图6 (a)实验室定量的ClNO2产率与颗粒物中Cl-物质的量的响应关系(摘自文献[8]图3, 版权归属于John Wiley and Sons);(b)2016年墨西哥湾TexAQS-GoMACCS外场观测期间测得的亚微米和超微米颗粒物中氯离子的浓度范围
Fig.6 (a) The efficiency of conversion of N2O5 to ClNO2 as a function of substrate chloride concentration, and (b) the range of sub- and super-micron chloride concentrations measured during the TexAQS-GoMACCS 2006 field study in the Gulf of Mexico (original figure referred from[8], copyright: John Wiley and Sons)
图7 北京2016年夏季ClNO2光解速率及Cl自由基生成速率的平均日变化[23]
Fig.7 The mean diurnal variation of the production rate of chloride radical via ClNO2 photolysis in summer Beijing, 2016[23]
表2 已有观测中ClNO2贡献Cl·生成速率日间峰值汇总
Table 2 Summary of the campaign average daily peak of the chloride radical via ClNO2 photolysis reported in previous filed campaigns
[1]
方苗利(Miao M L), 杨振平(YangZ P), 孙莉(SunL), 高倩(GaoQ), 淘金海(Tao J H), 裴文(Pei W). 化工生产与技术 (Chemical Production and Technology), 2011,18:44.
[2]
Finlayson-Pitts B J, Ezell M J, Pitts J N. Nature, 1989,337:241.
[3]
Osthoff H D, Roberts J M, Ravishankara A R, Williams E J, Lerner B M, Sommariva R, Bates T S, Coffman D, Quinn P K, Dibb J E, Stark H, Burkholder J B, Talukdar R K, Meagher J, Fehsenfeld F C, Brown S S. Nat. Geosci, 2008,1:324. doi: 10.1038/ngeo177
[4]
Thornton J A, Kercher J P, Riedel T P, Wagner N L, Cozic J, Holloway J S, Dube W P, Wolfe G M, Quinn P K, Middlebrook A M, Alexander B, Brown S S. Nature, 2010,464:271.

URL     pmid: 20220847
[5]
Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009,9:8351.
[6]
王海潮(Wang H C), 陈军(ChenJ), 陆克定(LuK D). 化学进展 (Prog. Chem.), 2015,27:963.
[7]
McNeill V F, Patterson J, Wolfe G M, Thornton J A. Atmos. Chem. Phys., 2006,6:1635. doi: 10.5194/acp-6-1635-2006
[8]
Roberts J M, Osthoff H D, Brown S S, Ravishankara A R, Coffman D, Quinn P, Bates T. Geophys. Res. Lett., 2009,36.
[9]
Mitroo D, Gill T E, Haas S, Pratt K A, Gaston C J. Environ. Sci. Technol, 2019,53:7442.

URL     pmid: 31117541
[10]
Leu M T, Int. J. Chem. Kinet., 1984,16:1311.
[11]
Chang C T, Liu T H, Jeng F T. Environ. Res, 2004,94:67. doi: 10.1016/j.envres.2003.07.008

URL     pmid: 14643288
[12]
Ghosh B, Papanastasiou D K, Talukdar R K, Roberts J M, Burkholder J B. J. Phys. Chem. A, 2012,116:5796.

URL     pmid: 21936506
[13]
Wang T, Tham Y J, Xue L K, Li Q Y, Zha Q Z, Wang Z, Poon S C N, Dube W P, Blake D R, Louie P K K, Luk C W Y, Tsui W, Brown S S. J. Geophys. Res-Atmos., 2016,121:2476.
[14]
Wang H C, Lu K D, Chen X R, Zhu Q D, Chen Q, Guo S, Jiang M Q, Li X, Shang D J, Tan Z F, Wu Y S, Wu Z J, Zou Q, Zheng Y, Zeng L M, Zhu T, Hu M, Zhang Y H. Environ. Sci. Tech. Let., 2017,4:416.
[15]
Roberts J M, Osthoff H D, Brown S S, Ravishankara A R. Science, 2008,321:1059.

URL     pmid: 18599742
[16]
Ganske J A, Ezell M J, Berko H N, Finlaysonpitts B J. Chem. Phys. Lett., 1991,179:204.
[17]
Lu K D, Guo S, Tan Z F, Wang H C, Shang D J, Liu Y H, Li X, Wu Z J, Hu M, Zhang Y H. Natl. Sci. Rev, 2019,6:579.
[18]
Livingston F E, Finlaysonpitts B J. Geophys. Res. Lett., 1991,18:17.
[19]
De Laeter J R, Bohlke J K, De Bievre P, Hidaka H, Peiser H S, Rosman K J R, Taylor P D P. Pure Appl. Chem., 2003,75:683.
[20]
Thornton J A, Abbatt J P D. J Phys Chem A, 2005,109:10004.

URL     pmid: 16838918
[21]
Eger P G, Helleis F, Schuster G, Phillips G J, Lelieveld J, Crowley J N. Atmos. Meas. Tech, 2019,12:1935.
[22]
Kercher J P, Riedel T P, Thornton J A. Atmos. Meas. Tech, 2009,2:193.
[23]
Le Breton M, Hallquist A M, Pathak R K, Simpson D, Wang Y J, Johansson J, Zheng J, Yang Y D, Shang D J, Wang H C, Liu Q Y, Chan C, Wang T, Bannan T J, Priestley M, Percival C J, Shallcross D E, Lu K D, Guo S, Hu M, Hallquist M. Atmos. Chem. Phys., 2018,18:13013.
[24]
Tham Y J, Wang Z, Li Q Y, Yun H, Wang W H, Wang X F, Xue L K, Lu K D, Ma N, Bohn B, Li X, Kecorius S, Gross J, Shao M, Wiedensohler A, Zhang Y H, Wang T. Atmos. Chem. Phys., 2016,16:14959.
[25]
Mielke L H, Furgeson A, Odame-Ankrah C A, Osthoff H D. Can. J. Chem., 2015,94:414.
[26]
Thaler R D, Mielke L H, Osthoff H D. Anal. Chem, 2011,83:2761.

URL     pmid: 21391546
[27]
Behnke W, George C, Scheer V, Zetzsch C. J. Geophys. Res-Atmos., 1997,102:3795.
[28]
Johnston H S, Leighton F. J. Am. Chem. Soc., 1953,75:3612.
[29]
Flood H, Forland T. Acta Chem. Scand., 1947,1:592.
[30]
Wang H, Lu K, Guo S, Wu Z, Shang D, Tan Z, Wang Y, Le Breton M, Lou S, Tang M, Wu Y, Zhu W, Zheng J, Zeng L, Hallquist M, Hu M, Zhang Y. Atmos. Chem. Phys., 2018,18:9705.
[31]
Bannan T J, Booth A M, Bacak A, Muller J B A, Leather K E, Le Breton M, Jones B, Young D, Coe H, Allan J, Visser S, Slowik J G, Furger M, Prevot A S H, Lee J, Dunmore R E, Hopkins J R, Hamilton J F, Lewis A C, Whalley L K, Sharp T, Stone D, Heard D E, Fleming Z L, Leigh R, Shallcross D E, Percival C J. J. Geophys. Res-Atmos., 2015,120:5638.
[32]
Faxon C B, Bean J K, Hildebrandt Ruiz L. Atmosphere-Basel, 2015,6:1487.
[33]
Mielke L H, Furgeson A, Osthoff H D. Environ. Sci. Technol, 2011,45:8889. doi: 10.1021/es201955u

URL     pmid: 21877701
[34]
王海潮(Wang H C), 陆克定(Lu K D). 化学进展 (Progress in Chemistry), 2016,28:917.
[35]
Chang W L, Bhave P V, Brown S S, Riemer N, Stutz J, Dabdub D. Aerosol. Sci. Tech, 2011,45:665.
[36]
Zhou W, Zhao J, Ouyang B, Mehra A, Xu W Q, Wang Y Y, Bannan T J, Worrall S D, Priestley M, Bacak A, Chen Q, Xie C H, Wang Q Q, Wang J F, Du W, Zhang Y J, Ge X L, Ye P L, Lee J D, Fu P Q, Wang Z F, Worsnop D, Jones R, Percival C J, Coe H, Sun Y L. Atmos. Chem. Phys., 2018,18:11581.
[37]
Wang X F, Wang H, Xue L K, Wang T, Wang L W, Gu R R, Wang W H, Tham Y J, Wang Z, Yang L X, Chen J M, Wang W X. Atmos. Environ., 2017,156:125.
[38]
Eger P G, Friedrich N, Schuladen J, Shenolikar J, Fischer H, Tadic I, Harder H, Martinez M, Rohloff R, Tauer S, Drewnick F, Fachinger F, Brooks J, Darbyshire E, Sciare J, Pikridas M, Lelieveld J, Crowley J N. Atmos. Chem. Phys., 2019,19:12121.
[39]
Phillips G J, Thieser J, Tang M J, Sobanski N, Schuster G, Fachinger J, Drewnick F, Borrmann S, Bingemer H, Lelieveld J, Crowley J N. Atmos. Chem. Phys., 2016,16:13231.
[40]
Bannan T J, Bacak A, Le Breton M, Flynn M, Ouyang B, McLeod M, Jones R, Malkin T L, Whalley L K, Heard D E, Bandy B, Khan M A H, Shallcross D E, Percival C J. J. Geophys. Res-Atmos., 2017,122:11154.
[41]
Bannan T J, Khan M A H, Le Breton M, Priestley M, Worrall S D, Bacak A, Marsden N A, Lowe D, Pitt J, Shallcross D E, Percival C J. Geophys. Res. Lett., 2019,46:8508.
[42]
Riedel T P, Wagner N L, Dube W P, Middlebrook A M, Young C J, Ozturk F, Bahreini R, VandenBoer T C, Wolfe D E, Williams E J, Roberts J M, Brown S S, Thornton J A. J. Geophys. Res-Atmos., 2013,118:8702.
[43]
Riedel T P, Bertram T H, Crisp T A, Williams E J, Lerner B M, Vlasenko A, Li S M, Gilman J, de Gouw J, Bon D M, Wagner N L, Brown S S, Thornton J A. Environ. Sci. Technol., 2012,46:10463.

URL     pmid: 22443276
[44]
Mielke L H, Stutz J, Tsai C, Hurlock S C, Roberts J M, Veres P R, Froyd K D, Hayes P L, Cubison M J, Jimenez J L, Washenfelder R A, Young C J, Gilman J B, de Gouw J A, Flynn J H, Grossberg N, Lefer B L, Liu J, Weber R J, Osthoff H D. J. Geophys. Res-Atmos., 2013,118:10638.
[45]
Sommariva R, Hollis L D J, Sherwen T, Baker A R, Ball S M, Bandy B J, Bell T G, Chowdhury M N, Cordell R L, Evans M J, Lee J D, Reed C, Reeves C E, Roberts J M, Yang M X, Monks P S. Atmos. Sci. Lett., 2018, 19:.
[46]
Wang Z, Wang W H, Tham Y J, Li Q Y, Wang H, Wen L, Wang X F, Wang T. Atmos. Chem. Phys., 2017,17:12361.
[47]
Yun H, Wang W H, Wang T, Xia M, Yu C, Wang Z, Poon S C N, Yue D L, Zhou Y. Atmos. Chem. Phys., 2018,18:17515.
[48]
Wang H C, Lu K D, Guo S, Wu Z J, Shang D J, Tan Z F, Wang Y J, Le Breton M, Lou S R, Tang M J, Wu Y S, Zhu W F, Zheng J, Zeng L M, Hallquist M, Hu M, Zhang Y H. Atmos. Chem. Phys., 2018,18:9705.
[49]
Jeong D, Seco R, Gu D, Lee Y, Nault B A, Knote C J, McGee T, Sullivan J T, Jimenez J L, Campuzano-Jost P, Blake D R, Sanchez D, Guenther A B, Tanner D, Huey L G, Long R, Anderson B E, Hall S R, Ullmann K, Shin H, Herndon S C, Lee Y, Kim D, Ahn J, Kim S. Atmos. Chem. Phys., 2019,19:12779.
[50]
Osthoff H D, Odame-Ankrah C A, Taha Y M, Tokarek T W, Schiller C L, Haga D, Jones K, Vingarzan R. Atmos. Chem. Phys., 2018,18:6293.
[51]
Wagner N L, Riedel T P, Young C J, Bahreini R, Brock C A, Dube W P, Kim S, Middlebrook A M, Ozturk F, Roberts J M, Russo R, Sive B, Swarthout R, Thornton J A, VandenBoer T C, Zhou Y, Brown S S. J. Geophys. Res-Atmos., 2013,118:9331.
[52]
McDuffie E E, Fibiger D L, Dube W P, Lopez-Hilfiker F, Lee B H, Thornton J A, Shah V, Jaegle L, Guo H Y, Weber R J, Reeves J M, Weinheimer A J, Schroder J C, Campuzano-Jost P, Jimenez J L, Dibb J E, Veres P, Ebben C, Sparks T L, Wooldridge P J, Cohen R C, Hornbrook R S, Apel E C, Campos T, Hall S R, Ullmann K, Brown S S. J. Geophys. Res-Atmos., 2018,123:4345.
[53]
Young C J, Washenfelder R A, Roberts J M, Mielke L H, Osthoff H D, Tsai C, Pikelnaya O, Stutz J, Veres P R, Cochran A K, VandenBoer T C, Flynn J, Grossberg N, Haman C L, Lefer B, Stark H, Graus M, de Gouw J, Gilman J B, Kuster W C, Brown S S. Environ. Sci. Technol., 2012,46:10965. doi: 10.1021/es302206a

URL     pmid: 23013316
[54]
McDuffie E E, Fibiger D L, Dube W P, Hilfiker F L, Lee B H, Jaegle L, Guo H Y, Weber R J, Reeves J M, Weinheimer A J, Schroder J C, Campuzano-Jost P, Jimenez J L, Dibb J E, Veres P, Ebben C, Sparks T L, Wooldridge P J, Cohen R C, Campos T, Hall S R, Ullmann K, Roberts J M, Thornton J A, Brown S S. J. Geophys. Res-Atmos., 2018,123:12994.
[55]
Morgan W T, Ouyang B, Allan J D, Aruffo E, Di Carlo P, Kennedy O J, Lowe D, Flynn M J, Rosenberg P D, Williams P I, Jones R, McFiggans G B, Coe H. Atmos. Chem. Phys., 2015,15:973.
[56]
Tham Y J, Wang Z, Li Q Y, Wang W H, Wang X F, Lu K D, Ma N, Yan C, Kecorius S, Wiedensohler A, Zhang Y H, Wang T. Atmos. Chem. Phys., 2018,18:13155.
[57]
Yu C, Wang Z, Xia M, Fu X, Wang W, Tham Y J, Chen T, Zheng P, Li H, Shan Y, Wang X, Xue L, Zhou Y, Yue D, Ou Y, Gao J, Lu K, Brown S S, Zhang Y, Wang T. Atmos. Chem. Phys. Discuss, 2019,2019:1.
[58]
Wahner A, Mentel T F, Sohn M, Stier J. J. Geophys. Res-Atmos., 1998,103:31103.
[59]
Mentel T F, Sohn M, Wahner A. Phys. Chem. Chem. Phys., 1999,1:5451.
[60]
Wagner N L, Riedel T P, Roberts J M, Thornton J A, Angevine W M, Williams E J, Lerner B M, Vlasenko A, Li S M, Dube W P, Coffman D J, Bon D M, de Gouw J A, Kuster W C, Gilman J B, Brown S S. J. Geophys. Res-Atmos., 2012,117.
[61]
Ryder O S, Campbell N R, Shaloski M, Al-Mashat H, Nathanson G M, Bertram T H. J. Phys. Chem. A, 2015,119:8519.

URL     pmid: 26153795
[62]
Staudt S, Gord J R, Karimova N V, McDuffie E E, Brown S S, Gerber R B, Nathanson G M, Bertram T H. ACS Earth Space Chem., 2019,3:1987.
[63]
Phillips G J, Tang M J, Thieser J, Brickwedde B, Schuster G, Bohn B, Lelieveld J, Crowley J N. Geophys. Res. Lett., 2012,39.
[64]
Tham Y J, Yan C, Xue L K, Zha Q Z, Wang X F, Wang T. Chinese Sci. Bull., 2014,59:356.
[65]
Riedel T P, Wolfe G M, Danas K T, Gilman J B, Kuster W C, Bon D M, Vlasenko A, Li S M, Williams E J, Lerner B M, Veres P R, Roberts J M, Holloway J S, Lefer B, Brown S S, Thornton J A. Atmos. Chem. Phys., 2014,14:3789.
[66]
Sarwar G, Simon H, Bhave P, Yarwood G. Atmos. Chem. Phys., 2012,12:6455.
[67]
Li Q Y, Zhang L, Wang T, Tham Y J, Ahmadov R, Xue L K, Zhang Q, Zheng J Y. Atmos. Chem. Phys., 2016,16:14875.
[68]
Sarwar G, Simon H, Xing J, Mathur R. Geophys. Res. Lett., 2014,41:4050.
[69]
Qiu X H, Ying Q, Wang S, Duan L, Wang Y H, Lu K D, Wang P, Xing J, Zheng M, Zhao M J, Zheng H T, Zhang Y H, Hao J M. Sci. Total Environ., 2019,693:11.
[70]
Riedel T P, Bertram T H, Ryder O S, Liu S, Day D A, Russell L M, Gaston C J, Prather K A, Thornton J A. Atmos. Chem. Phys., 2012,12:2959.
[71]
Qiu X H, Ying Q, Wang S X, Duan L, Zhao J, Xing J, Ding D, Sun Y L, Liu B X, Shi A J, Yan X, Xu Q C, Hao J M. Atmos. Chem. Phys., 2019,19:6737.
[72]
楚碧武(Chu B W), 马庆鑫(MaQ X), 段凤魁(DuanF K), 马金珠(MaJ Z), 蒋靖坤(Jiang J K), 贺克斌(He K B), 贺泓(He H). 化学进展 (Progress in Chemistry), 2020,32:1.
[73]
Fu X, Wang T, Wang S X, Zhang L, Cai S Y, Xing J, Hao J M. Environ. Sci. Technol, 2018,52:1644. doi: 10.1021/acs.est.7b05030

URL     pmid: 29376646
[74]
Xue L K, Saunders S M, Wang T, Gao R, Wang X F, Zhang Q Z, Wang W X. Geosci. Model. Dev, 2015,8:3151.
[75]
Shi B, Wang W G, Zhou L, Sun Z, Fan C C, Chen Y, Zhang W Y, Qiao Y Y, Qiao Y L, Ge M F. Atmos. Environ, 2020,222:1.
[76]
Haskins J D, Lee B H, Lopez-Hilifiker F D, Peng Q Y, Jaegle L, Reeves J M, Schroder J C, Campuzano-Jost P, Fibiger D, McDuffie E E, Jimenez J L, Brown S S, Thornton J A. J. Geophys. Res-Atmos., 2019,124:8851.
[1] 李连欣, 曹冉冉, 张彭义. 室温催化分解空气中臭氧污染物[J]. 化学进展, 2021, 33(7): 1188-1200.
[2] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[3] 楚碧武, 马庆鑫, 段凤魁, 马金珠, 蒋靖坤, 贺克斌, 贺泓. 大气“霾化学”:概念提出和研究展望[J]. 化学进展, 2020, 32(1): 1-4.
[4] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[5] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[6] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
[7] 徐武军 张国臣 郑明霞 陈健 王凯军. 臭氧氧化技术处理含抗生素废水*[J]. 化学进展, 2010, 22(05): 1002-1009.
[8] 谢绍东 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制*[J]. 化学进展, 2010, 22(04): 727-733.
[9] 陆克定 张远航. HOx自由基的实地测量及其化学机制解析*[J]. 化学进展, 2010, 22(0203): 500-514.
[10] 刘金强 钱超 陈新志. 钝化芳环的硝化研究进展*[J]. 化学进展, 2009, 21(12): 2635-2641.
[11] 葛茂发,马春平. 活性卤素化学*[J]. 化学进展, 2009, 21(0203): 307-334.
[12] 贾龙,葛茂发,徐永福,杜林,庄国顺,王殿勋. 大气臭氧化学研究进展*[J]. 化学进展, 2006, 18(11): 1565-1574.
[13] 王振亚,周士康,盛六四. 极地平流层云及其非均相化学*[J]. 化学进展, 2004, 16(01): 49-.
[14] 林永达,陈庆云. 大气臭氧层破坏和CFCs替代物[J]. 化学进展, 1998, 10(02): 228-.
阅读次数
全文


摘要

硝酰氯的大气化学