English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 1-4 DOI: 10.7536/PC191230   后一篇

• •

大气“霾化学”:概念提出和研究展望

楚碧武1,3, 马庆鑫1,3, 段凤魁2, 马金珠1,3, 蒋靖坤2, 贺克斌2,3,**(), 贺泓1,3,**()   

  1. 1. 中国科学院生态环境研究中心 环境模拟与污染控制国家重点联合实验室 北京 100085
    2. 清华大学环境学院 环境模拟与污染控制国家重点联合实验室 北京 100084
    3. 中国科学院城市环境研究所 中国科学院区域大气环境研究卓越创新中心 厦门 361021
  • 收稿日期:2019-12-30 出版日期:2020-01-15 发布日期:2020-01-08
  • 通讯作者: 贺克斌, 贺泓
  • 作者简介:
    † These authors contributed equally to this work.
  • 基金资助:
    中国科学院先导专项(XDB05000000); 国家自然科学基金重大项目(21190054); 国家重点研发计划资助(2017YFC0211101); 国家重点研发计划资助(2017YFC0209503); 国家重点研发计划资助(2016YFC0201506)

Atmospheric “Haze Chemistry”: Concept and Research Prospects

Biwu Chu1,3, Qingxin Ma1,3, Fengkui Duan2, Jinzhu Ma1,3, Jingkun Jiang2, Kebin He2,3,**(), Hong He1,3,**()   

  1. 1. State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received:2019-12-30 Online:2020-01-15 Published:2020-01-08
  • Contact: Kebin He, Hong He
  • About author:
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05000000); The National Natural Science Foundation of China(21190054); The National Key R&D Program of China(2017YFC0211101); The National Key R&D Program of China(2017YFC0209503); The National Key R&D Program of China(2016YFC0201506)

大气污染是人类面临的重大环境挑战。我国大气污染具有高度的复合污染特征,其形成过程既有高强度的颗粒物均相成核现象,又有多介质非均相致霾过程,同时耦合了强的大气氧化性以及O3污染,是不同于洛杉矶光化学烟雾和伦敦烟雾的新型“霾化学”烟雾污染。“霾化学”区别于并突破现有的理论认识,是解析我国典型多介质复合污染环境下PM2.5成因以及PM2.5与O3污染间非线性复杂关系,综合研究气、液、固多介质非均相过程的大气污染化学。研究“霾化学”过程对精准控制我国乃至其他国家大气复合污染意义重大。本文提出和总结了大气“霾化学”概念,并对“霾化学”理论的完善和发展进行了展望。

Air pollution is a major challenge for the humankind. Under the highly complex air pollution conditions in China, strong homogenous nucleation and multiphase heterogeneous processes coexist, coupling with strong atmospheric oxidizing capacity and ozone pollution. This complex air pollution, different from the “London smog” and the “Los Angeles photochemical smog”, is a new type of “haze chemistry smog” pollution. “Haze chemistry” distinguishes from traditional homogeneous chemistry by surpassing its existing theoretical understandings. It is a type of air pollution chemistry that comprehensively studies the gas-liquid-solid multiphase processes, revealing the formation mechanism of PM2.5 and the non-linear relationship between PM2.5 and O3 under typical multi-medium complex air pollution conditions. Understanding “haze chemistry” processes is crucial for precise control of complex air pollution in China and other countries. Here, we propose and summarize the concept of “haze chemistry”, and discuss its further improvement, development, and application.

()
[1]
He K B , Yang F M , Ma Y L , Zhang Q , Yao Xi H , Kchan C , Cadle S , Chan T . Atmospheric Environment, 2001,35(29):4959.
[2]
贺泓(He H), 王新明(Wang X M), 王跃思(Wang Y S), 王自发(Wang Z F), 刘建国(Liu J G), 陈运法(Chen Y F). 中国科学院院刊(Bulletin of Chinese Academy of Sciences), 2013,28(03):54.
[3]
He H , Wang Y S , Ma Q X , Ma J Z , Chu B W , Ji D S , Tang G Q , Liu C , Zhang H X , Hao J M . Sci. Rep., 2014,4:4172. https://www.ncbi.nlm.nih.gov/pubmed/24566871

doi: 10.1038/srep04172     URL     pmid: 24566871
[4]
Wang Z B , Wu Z J , Yue D L , Shang D J , Guo S , Sun J Y , Ding A J , Wang L , Jiang J K , Guo H , Gao J , Cheung H C , Morawska L , Keywood M , Hu M . Science of the Total Environment, 2017,577:258. https://www.ncbi.nlm.nih.gov/pubmed/27817924

doi: 10.1016/j.scitotenv.2016.10.177     URL     pmid: 27817924
[5]
Yao L , Garmash O , Bianchi F , Zheng J , Yan C , Kontkanen J , Junninen H , Mazon S B Ehn M , Paasonen P , Sipila M , Wang M Y , Wang X K , Xiao S,Chen H F , Lu, Y Q , Zhang B W , Wang D F , Fu Q Y , Geng F H , Li L , Wang H L , Qiao L P,Yang X , Chen J M , Kerminen V M , Petaja T , Worsnop D R , Kulmala M , Wang L . Science, 2018,361(6399):278. https://www.ncbi.nlm.nih.gov/pubmed/30026225

doi: 10.1126/science.aao4839     URL     pmid: 30026225
[6]
Chu B W , Kerminen V M , Bianchi F , Yan C , Petäjä T , Kulmala M . Atmospheric Chemistry and Physics, 2019,19(1):115.
[7]
Ma Q X , Liu Y C , He H . J. Phys. Chem. A, 2008,112(29):6630. https://www.ncbi.nlm.nih.gov/pubmed/18578482

doi: 10.1021/jp802025z     URL     pmid: 18578482
[8]
马金珠(Ma J Z), 刘永春(Liu Y C), 马庆鑫(Ma Q X), 刘畅(Liu C), 贺泓(He H). 环境化学(Environmental Chemistry), 2011,30(1):97.
[9]
Liu C , Ma Q X , Liu Y C , Ma J Z , He H . Phys. Chem. Chem. Phys., 2012,14(5):1668. https://www.ncbi.nlm.nih.gov/pubmed/21993907

doi: 10.1039/c1cp22217a     URL     pmid: 21993907
[10]
张小曳(Zhang X Y), 孙俊英(Sun J Y), 王亚强(Wang Y Q), 李卫军(Li W J), 张蔷(Zhang Q), 王炜罡(Wang W G), 权建农(Quan J N), 曹国良(Cao G L), 王继志(Wang J Z), 杨元琴(Yang Y Q), 张养梅(Zhang Y M) . 科学通报(Chinese Science Bulletin), 2013,58(13):1178.
[11]
Zheng B , Zhang Q , Zhang Y , He K B , Wang K , Zheng G J , Duan F K , Ma Y L , Kimoto T . Atmospheric Chemistry and Physics, 2015,15(4):2031.
[12]
Tang M J , Huang X , Lu K D , Ge M F , Li Y J , Cheng P , Zhu T , Ding A J , Zhang Y H , Gligorovski S , Song W , Ding X , Bi X H , Wang X M . Atmos. Chem. Phys., 2017,17(19):11727.
[13]
Li K , Jacob D J , Liao H , Shen L , Zhang Q , Bates K H . Proceedings of the National Academy of Sciences of the United States of America, 2019,116(2):422.
[14]
Lu K D , Guo S , Tan Z F , Wang H C , Shang D J , Liu Y H , Li X , Wu Z J , Hu M , Zhang Y H . National Science Review, 2019,6(3):579.
[15]
Dentener F J , Carmichael G R , Zhang Y , Lelieveld J , Crutzen P J . J. Geophys. Res., 1996,101(D17):22869.
[16]
Ravishankara A R . Science, 1997,276(5315):1058.
[17]
Liu Y C , He H , Mu Y J . Atmospheric Environment, 2008,42(5):960.
[18]
Ma J Z , Liu Y C , He H . Atmospheric Environment, 2010,44(35):4446.
[19]
Zhang S P , Xing J , Sarwar G , Ge Y L , He H , Duan F K , Zhao Y , He K B , Zhu L D , Chu B W . Atmospheric Environment, 2019,208:133. https://www.ncbi.nlm.nih.gov/pubmed/31186616

doi: 10.1016/j.atmosenv.2019.04.004     URL     pmid: 31186616
[20]
Cai R L , Yang D S , Fu Y Y , Wang X , Li X X , Ma Y , Hao J M , Zheng J , Jiang J K . Atmospheric Chemistry and Physics, 2017,17(20):12327.
[21]
Cai R L , Jiang J K . Atmospheric Chemistry and Physics, 2017,17(20):12659.
[22]
Wang G H , Zhang R Y , Gomez M E , Yang L X , Zamora M L , Hu M , Lin Y , Peng J F , Guo S , Meng J J , Li J J , Cheng C L , Hu T F , Ren Y Q , Wang Y S , Gao J , Cao J J , An Z S , Zhou W J , Li G H , Wang J Y , Tian P F , Marrero-Ortiz W , Secrest J , Du Z F , Zheng J , Shang D J , Zeng L M , Shao M , Wang W G , Huang Y , Wang Y , Zhu Y J , Li Y X , Hu J X , Pan B , Cai L , Cheng Y T , Ji Y M , Zhang F , Rosenfeld D , Liss P S , Duce R A , Kolb C E , Molina M J . Proceedings of the National Academy of Sciences of the United States of America, 2016,113(48):13630.
[23]
Cheng Y F , Zheng G J , Wei C , Mu Q , Zheng B , Wang Z B , Gao M , Zhang Q , He K B , Carmichael G , Poschl U , Su H . Science Advances, 2016,2(12):e1601530. https://www.ncbi.nlm.nih.gov/pubmed/28028539

doi: 10.1126/sciadv.1601530     URL     pmid: 28028539
[24]
Li H Y , Cheng J , Zhang Q , Zheng B , Zhang Y X , Zheng G J , He H . Atmospheric Chemistry and Physics, 2019,19(17):11485.
[25]
Zhang Q , Zheng Y X , Tong D , Shao M , Wang S X , Zhang Y H , Xu X D , Wang J N , He H D , Liu W Q , Ding Y H , Lei Y , Li J H , Wang Z F , Zhang X Y , Wang Y S , Cheng J , Liu Y , Shi Q R , Hao J M . Proceedings of the National Academy of Sciences, 2019,116(49):201907956.
[26]
Ma J Z , Wang C X , He H . Applied Catalysis B-Environmental, 2017,201:503.
[1] 李连欣, 曹冉冉, 张彭义. 室温催化分解空气中臭氧污染物[J]. 化学进展, 2021, 33(7): 1188-1200.
[2] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[3] 韩德文, 王鑫彤, 鞠法帅, 王杨君, 冯加良, 汪午. PM2.5中的有机硫酸酯类化合物[J]. 化学进展, 2017, 29(5): 530-538.
[4] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[5] 徐武军 张国臣 郑明霞 陈健 王凯军. 臭氧氧化技术处理含抗生素废水*[J]. 化学进展, 2010, 22(05): 1002-1009.
[6] 葛茂发,马春平. 活性卤素化学*[J]. 化学进展, 2009, 21(0203): 307-334.
[7] 贾龙,葛茂发,徐永福,杜林,庄国顺,王殿勋. 大气臭氧化学研究进展*[J]. 化学进展, 2006, 18(11): 1565-1574.
[8] 王振亚,周士康,盛六四. 极地平流层云及其非均相化学*[J]. 化学进展, 2004, 16(01): 49-.
[9] 林永达,陈庆云. 大气臭氧层破坏和CFCs替代物[J]. 化学进展, 1998, 10(02): 228-.