English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 917-933 DOI: 10.7536/PC151225 前一篇   后一篇

• 综述与评论 •

五氧化二氮(N2O5)非均相摄取系数的定量和参数化

王海潮, 陆克定*   

  1. 北京大学环境科学与工程学院 环境模拟与污染控制国家重点实验室 北京 100871
  • 收稿日期:2015-12-01 修回日期:2016-01-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 陆克定 E-mail:k.lu@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 41375124, 91544225, 21190052, 41121004)、中科院先导专项(No. XDB05010500)与国家重点实验室自由探索基金课题(No. 13Z02ESPCP)资助

Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5)

Wang Haichao, Lu Keding*   

  1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received:2015-12-01 Revised:2016-01-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 41375124,91544225,21190052,41121004), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010500), and the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (No.13Z02ESPCP).
颗粒物污染是我国超大城市地区面临的主要污染问题,大气化学受到非均相反应的强烈影响。N2O5非均相反应过程的定量描述对厘清我国超大城市地区夜间大气氧化性、区域NOx收支、臭氧生成等问题具有重要意义。本文从反应机理、摄取系数测量技术和不同气溶胶基体测量结果等方面系统总结了N2O5非均相反应动力学研究进展。N2O5非均相摄取是典型的反应性摄取过程,是气溶胶流动管测量系统的理想应用对象。实验室动力学研究从硫酸盐等模型颗粒物出发,结合外场观测获取的颗粒物信息,模拟使用的颗粒物越来越接近实际大气条件。N2O5在不同颗粒物表面摄取系数在0.001~0.2之间,其变化范围超过两个数量级,主要受到环境温度、湿度、颗粒物组分中NO3-、Cl-、SO42-、含水量、有机物、颗粒物混合状态和相态等因素影响;颗粒物中H2O、Cl-、SO42-的浓度升高会提高非均相摄取速率,而NO3-、有机物则会对摄取过程产生抑制作用。欧美地区外场观测研究表明这些影响因素并不是线性叠加的,而是存在非常复杂的相互作用,基于实验室测量结果开发的参数化公式不能很好地拟合观测结果。由于N2O5和颗粒物的高值区共存于污染城市地区,下一步研究需要在包括我国超大城市地区在内的典型城市大气条件下开展更多的外场实测研究和建立更准确的参数化公式。
Particulate pollution is a major air pollution problem in Chinese mega-cities. Under such conditions, the atmospheric gas-phase chemistry is strongly influenced by heterogeneous reactions, of which to quantify the heterogeneous reaction processes of N2O5 is essential for the understanding of the nighttime oxidation capacity, regional NOx budget, photochemical ozone prodution, etc. In this paper, we extensively review the research progress of the N2O5 heterogeneous reaction processes such as its reaction mechanism, measurement techniques of the corresponding uptake coefficient (γN2O5) and the measurement results on different aerosol substrates. The heterogeneous reaction processes of N2O5 is a typical reactive uptake process which can be ideally studied by the aerosol flow tube system. The corresponding laboratory kinetic studies are started from model aerosols (sulfate), and evolved to be more realistic aerosols according to the accumulated knowledges on the aerosol properties obtained in field studies. It is found that the γN2O5 varied from 0.001 to 0.2 on different aerosol substrates, more than two orders of magnitude. The variation is influenced by the ambient temperature, relative humidity, mixing state, phase state, aerosol chemical compositions like NO3-, Cl-, SO42-, liquid water content (LWC), organics, etc., of which the uptake coefficient is higher with higher LWC, Cl-, SO42- while lower with higher NO3- and organics. The avaiable field studies in the United States and Europe showed that, to describe γN2O5, these impact factors can't be independently expressed; and the dependence seems to be very complicated and cross correlated. Therefore the state of art parameterization methods of γN2O5 developed from lab kinetic studies are still not able to describe the field observations. Since high aerosol loading and high N2O5 are always co-located at urban aeras, more field observations and sucessful parameterization of γN2O5 is proposed to be conducted in typical urban conditions including Chinese megacity regions.

Contents
1 Introduction
2 Proposed Mechanisms of the N2O5 heterogeneous uptake
3 Measurement of the heterogeneous uptake coefficient of N2O5 in the simulated system
3.1 Measurement techniques
3.2 Measurement results on different aerosol substrates
4 Measurement of the heterogeneous uptake coefficient of N2O5 in the field
5 The parameterization of the heterogeneous uptake coefficient of N2O5
6 Conclusion and outlook

中图分类号: 

()
[1] Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H. Nature, 2014, 514: 218.
[2] Zhang R Y, Wang G H, Guo S, Zarnora M L, Ying Q, Lin Y, Wang W G, Hu M, Wang Y. Chem. Rev., 2015, 115: 3803.
[3] 朱彤(Zhu T),尚静(Shang J),赵德峰(Zhao D F). 中国科学· 化学(Scientia Sinica Chimica), 2010, 40(12): 1731.
[4] Davidovits P, Kolb C E, Williams L R, Jayne J T, Worsnop D R. Chem. Rev., 2006, 106: 1323.
[5] Kolb C E, Cox R A, Abbatt J P D, Ammann M, Davis E J, Donaldson D J, Garrett B C, George C, Griffiths P T, Hanson D R, Kulmala M, McFiggans G, Poschl U, Riipinen I, Rossi M J, Rudich Y, Wagner P E, Winkler P M, Worsnop D R, O'Dowd C D. Atmos. Chem. Phys., 2010, 10: 10561
[6] Abbatt J P D, Lee A K Y, Thornton J A. Chem. Soc. Rev., 2012, 41: 6555.
[7] 张泽峰(Zhang Z F),朱彤(Zhu T),尚静(Shang J). 化学进展(Progress in Chemistry), 2009, 21(2/3): 282.
[8] Chang W L, Bhave P V, Brown S S, Riemer N, Stutz J, Dabdub D. Aerosol Sci. Tech., 2011, 45: 665.
[9] Brown S S, Stutz J. Chem. Soc. Rev., 2012, 41: 6405.
[10] 王海潮(Wang H C), 陈军(Chen J), 陆克定(Lu K D).化学进展(Progress in Chemistry), 2015, 27: 963.
[11] Alexander B, Hastings M G, Allman D J, Dachs J, Thornton J A, Kunasek S A. Atmos. Chem. Phys., 2009, 9: 5043.
[12] Tsai C, Wong C, Hurlock S, Pikelnaya O, Mielke L H, Osthoff H D, Flynn J H, Haman C, Lefer B, Gilman J, de Gouw J, Stutz J. J. Geophys. Res. -Atmos., 2014, 119: 13004.
[13] Mozurkewich M, Calvert J G. J. Geophys. Res. -Atmos., 1988, 93: 15889.
[14] Li S M, Anlauf K G, Wiebe H A. J. Geophys. Res. -Atmos., 1993, 98: 5139.
[15] Brown S S, Ryerson T B, Wollny A G, Brock C A, Peltier R, Sullivan A P, Weber R J, Dube W P, Trainer M, Meagher J F, Fehsenfeld F C, Ravishankara A R. Science, 2006, 311: 67.
[16] Brown S S, Dube W P, Fuchs H, Ryerson T B, Wollny A G, Brock C A, Bahreini R, Middlebrook A M, Neuman J A, Atlas E, Roberts J M, Osthoff H D, Trainer M, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res. -Atmos., 2009, 114: 1013.
[17] Crowley J N, Schuster G, Pouvesle N, Parchatka U, Fischer H, Bonn B, Bingemer H, Lelieveld J. Atmos. Chem. Phys., 2010, 10: 2795.
[18] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition,Wiley, 2006.
[19] Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications,Academic Press, 1999.
[20] 唐孝炎(Tang X Y),张远航(Zhang Y H),邵敏(Shao M). 大气环境化学(第二版)(Atmospheric Environmental Chemistry,2nd ed).北京:高等教育出版社(Beijing:Higher Education Press),2006. 185.
[21] Fuchs N A, Sutugin A G. Highly Dispersed Aerosols,in International Reviews of Aerosol Physics and Chemistry,Vol 2, NY, 1971. 1.
[22] Tang M J, Schuster G, Crowley J N. Atmos. Chem. Phys., 2014, 14: 245.
[23] Aldener M, Brown S S, Stark H, Williams E J, Lerner B M, Kuster W C, Goldan P D, Quinn P K, Bates T S, Fehsenfeld F C, Ravishankara A R. J. Geophys. Res. -Atmos., 2006, 111: 5307.
[24] Stone D, Evans M J, Walker H, Ingham T, Vaughan S, Ouyang B, Kennedy O J, McLeod M W, Jones R L, Hopkins J, Punjabi S, Lidster R, Hamilton J F, Lee J D, Lewis A C, Carpenter L J, Forster G, Oram D E, Reeves C E, Bauguitte S, Morgan W, Coe H, Aruffo E, Dari-Salisburgo C, Giammaria F, Di Carlo P, Heard D E. Atmos. Chem. Phys., 2014, 14: 1299.
[25] Allan B J, McFiggans G, Plane J M C, Coe H, McFadyen G G. J. Geophys. Res. -Atmos., 2000, 105: 24191.
[26] Jacob D J. Atmos. Environ., 2000, 34: 2131.
[27] Evans M J, Jacob D J. Geophys. Res. Lett., 2005, 32: 297.
[28] Wahner A, Mentel T F, Sohn M, Stier J. J. Geophys. Res. -Atmos., 1998, 103: 31103.
[29] Mentel T F, Sohn M, Wahner A. Phys. Chem. Chem. Phys., 1999, 1: 5451.
[30] Robinson G N, Worsnop D R, Jayne J T, Kolb C E, Davidovits P. J. Geophys. Res. -Atmos., 1997, 102: 3583.
[31] Finlaysonpitts B J, Ezell M J, Pitts J N. Nature, 1989, 337: 241.
[32] Osthoff H D, Roberts J M, Ravishankara A R, Williams E J, Lerner B M, Sommariva R, Bates T S, Coffman D, Quinn P K, Dibb J E, Stark H, Burkholder J B, Talukdar R K, Meagher J, Fehsenfeld F C, Brown S S. Nat. Geosci., 2008, 1: 324.
[33] Thornton J A, Kercher J P, Riedel T P, Wagner N L, Cozic J, Holloway J S, Dube W P, Wolfe G M, Quinn P K, Middlebrook A M, Alexander B, Brown S S. Nature, 2010, 464: 271.
[34] Roberts J M, Osthoff H D, Brown S S, Ravishankara A R, Coffman D, Quinn P, Bates T. Geophys. Res. Lett., 2009, 36: 1437.
[35] Thornton J A, Braban C F, Abbatt J P D. Phys. Chem. Chem. Phys., 2003, 5: 4593.
[36] Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009, 9: 8351.
[37] Seisel S, Borensen C, Vogt R, Zellner R. Atmos. Chem. Phys., 2005, 5: 3423.
[38] Brouwer L, Rossi M J, Golden D M. J. Phys. Chem.-Us., 1986, 90: 4599.
[39] Longfellow C A, Ravishankara A R, Hanson D R. J. Geophys. Res. -Atmos., 2000, 105: 24345.
[40] Karagulian F, Rossi M J. J. Phys. Chem. A, 2007, 111: 1914.
[41] 陈琦(Chen Q),朱彤(Zhu T),李宏军(Li H J),丁杰(Ding J),李怡(Li Y). 自然科学进展(Progress in Natural Science),2005,15(12):1518.
[42] 张泽峰(Zhang Z F),朱彤(Zhu T),尚静(Shang J),赵德峰(Zhao D F). 环境科学学报(Acta Scientiae Circumstantiae),2011,31(10):2073.
[43] 赵德峰(Zhao D F),朱彤(Zhu T),陈琦(Chen Q),刘颖君(Liu Y J),张泽峰(Zhang Z F). 中国科学·化学(Scientia Sinica Chimica), 2010, 40(12):1741.
[44] 吴玲燕(Wu L Y),佟胜睿(Tong S R),葛茂发(Ge M F). 环境化学(Envronmental Chemistry), 2013, 32(7):1365.
[45] Rkiouak L, Tang M J, Camp J C J, McGregor J, Watson I M, Cox R A, Kalberer M, Ward A D, Pope F D. Phys. Chem. Chem. Phys., 2014, 16: 11426.
[46] Tang M J, Camp J C J, Rkiouak L, McGregor J, Watson I M, Cox R A, Kalberer M, Ward A D, Pope F D. J. Phys. Chem. A, 2014, 118: 8817.
[47] Gross S, Iannone R, Xiao S, Bertram A K. Phys. Chem. Chem. Phys., 2009, 11: 7792.
[48] Knopf D A, Anthony L M, Bertram A K. J. Phys. Chem. A, 2005, 109: 5579.
[49] Knopf D A, Cosman L M, Mousavi P, Mokamati S, Bertram A K. J. Phys. Chem. A, 2007, 111: 11021.
[50] Brown R L. J. Res. Nat. Bur. Stand., 1978, 83: 1.
[51] Mozurkewich M, Mcmurry P H, Gupta A, Calvert J G. J. Geophys. Res. -Atmos., 1987, 92: 4163.
[52] Griffiths P T, Badger C L, Cox R A, Folkers M, Henk H H, Mentel T F. J. Phys. Chem. A, 2009, 113: 5082.
[53] Fahey D W, Eubank C S, Hubler G, Fehsenfeld F C. Atmos. Environ., 1985, 19: 1883.
[54] Karagulian F, Santschi C, Rossi M J. Atmos. Chem. Phys., 2006, 6: 1373.
[55] Morgan W T, Ouyang B, Allan J D, Aruffo E, Di Carlo P, Kennedy O J, Lowe D, Flynn M J, Rosenberg P D, Williams P I, Jones R, McFiggans G B, Coe H. Atmos. Chem. Phys., 2015, 15: 973.
[56] Hanisch F, Crowley J N. J. Phys. Chem. A, 2001, 105: 3096.
[57] Wagner C, Hanisch F, Holmes N, de Coninck H, Schuster G, Crowley J N. Atmos. Chem. Phys., 2008, 8: 91.
[58] Gross S, Bertram A K. J. Phys. Chem. A, 2008, 112: 3104.
[59] Badger C L, Griffiths P T, George I, Abbatt J P D, Cox R A. J. Phys. Chem. A, 2006, 110: 6986.
[60] Hallquist M, Stewart D J, Stephenson S K, Cox R A. Phys. Chem. Chem. Phys., 2003, 5: 3453.
[61] Wagner C, Schuster G, Crowley J N. Atmos. Environ., 2009, 43: 5001.
[62] Hu J H, Abbatt J P D. J. Phys. Chem. A, 1997, 101: 871.
[63] Kane S M, Caloz F, Leu M T. J. Phys. Chem. A, 2001, 105: 6465.
[64] Thornton J A, Abbatt J P D. J. Phys. Chem. A, 2005, 109: 10004.
[65] McNeill V F, Patterson J, Wolfe G M, Thornton J A. Atmos. Chem. Phys., 2006, 6: 1635.
[66] Escoreia E N, Sjostedt S J, Abbatt J P D. J. Phys. Chem. A, 2010, 114: 13113.
[67] Tang M J, Thieser J, Schuster G, Crowley J N. Atmos. Chem. Phys., 2010, 10: 2965.
[68] Tang M J, Thieser J, Schuster G, Crowley J N. Phys. Chem. Chem. Phys., 2012, 14: 8551.
[69] Vandoren J M, Watson L R, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. J. Phys. Chem.-Us., 1990, 94: 3265.
[70] Saathoff H, Naumann K H, Riemer N, Kamm S, Mohler O, Schurath U, Vogel H, Vogel B. Geophys. Res. Lett., 2001, 28: 1957.
[71] Folkers M, Mentel T F, Wahner A. Geophys. Res. Lett., 2003, 30: 46-1.
[72] Mogili P K, Kleiber P D, Young M A, Grassian V H. Atmos. Environ., 2006, 40: 7401.
[73] Fried A, Henry B E, Calvert J G, Mozurkewich M. J. Geophys. Res. -Atmos., 1994, 99: 3517.
[74] Griffiths P T, Cox R A. Atmos. Sci. Lett., 2009, 10: 159.
[75] Hallquist M, Stewart D J, Baker J, Cox R A. J. Phys. Chem. A, 2000, 104: 3984.
[76] Wahner A, Mentel T F, Sohn M. Geophys. Res. Lett., 1998, 25: 2169.
[77] Riemer N, Vogel H, Vogel B, Schell B, Ackermann I, Kessler C, Hass H. J. Geophys. Res. -Atmos., 2003, 108: 4601.
[78] Davis J M, Bhave P V, Foley K M. Atmos. Chem. Phys., 2008, 8: 5295.
[79] Behnke W, Kruger H U, Scheer V, Zetzsch C. J. Aerosol Sci., 1991, 22: S609.
[80] Behnke W, George C, Scheer V, Zetzsch C. J. Geophys. Res. -Atmos., 1997, 102: 3795.
[81] Folkers M. Doctoral Dissertation of Universitätzu Köln, 2001.
[82] Stewart D J, Griffiths P T, Cox R A. Atmos. Chem. Phys., 2004, 4: 1381.
[83] Anttila T, Kiendler-Scharr A, Tillmann R, Mentel T F. J. Phys. Chem. A, 2006, 110: 10435.
[84] Cosman L M, Bertram A K. J. Phys. Chem. A, 2008, 112: 4625.
[85] Cosman L M, Knopf D A, Bertram A K. J. Phys. Chem. A, 2008, 112: 2386..
[86] Gaston C J, Thornton J A, Ng N L. Atmos. Chem. Phys., 2014, 14: 5693.
[87] Riemer N, Vogel H, Vogel B, Anttila T, Kiendler-Scharr A, Mentel T F. J. Geophys. Res. -Atmos., 2009, 114: 767.
[88] Knopf D A, Forrester S M, Slade J H. Phys. Chem. Chem. Phys., 2011, 13: 21050.
[89] Hoffman R C, Gebel M E, Fox B S, Finlayson-Pitts B J. Phys. Chem. Chem. Phys., 2003, 5: 1780.
[90] Tang M J, Telford P J, Pope F D, Rkiouak L, Abraham N L, Archibald A T, Braesicke P, Pyle J A, McGregor J, Watson I M, Cox R A, Kalberer M. Atmos. Chem. Phys., 2014, 14: 6035.
[91] Bertram T H, Thornton J A, Riedel T P, Middlebrook A M, Bahreini R, Bates T S, Quinn P K, Coffman D J. Geophys. Res. Lett., 2009, 36: 308.
[92] Walker J M, Philip S, Martin R V, Seinfeld J H. Atmos. Chem. Phys., 2012, 12: 11213.
[93] Zhang L, Jacob D J, Knipping E M, Kumar N, Munger J W, Carouge C C, van Donkelaar A, Wang Y X, Chen D. Atmos. Chem. Phys., 2012, 12: 4539.
[94] Stavrakou T, Muller J F, Boersma K F, van der A R J, Kurokawa J, Ohara T, Zhang Q. Atmos. Chem. Phys., 2013, 13: 9057.
[95] Brown S S, Stark H, Ravishankara A R. J. Geophys. Res. -Atmos., 2003, 108: 1601.
[96] Wagner N L, Riedel T P, Young C J, Bahreini R, Brock C A, Dube W P, Kim S, Middlebrook A M, Ozturk F, Roberts J M, Russo R, Sive B, Swarthout R, Thornton J A, VandenBoer T C, Zhou Y, Brown S S. J. Geophys. Res. -Atmos., 2013, 118: 9331.
[97] Bertram T H, Thornton J A, Riedel T P. Atmos. Meas. Tech., 2009, 2: 231.
[98] Riedel T P, Bertram T H, Ryder O S, Liu S, Day D A, Russell L M, Gaston C J, Prather K A, Thornton J A. Atmos. Chem. Phys., 2012, 12: 2959.
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 钟佳利, 王炜罡, 彭超, 马楠, 吴志军, 葛茂发. 大气气溶胶吸湿性及其对环境的影响[J]. 化学进展, 2022, 34(4): 801-814.
[3] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[4] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[5] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[6] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[7] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[8] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[9] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[10] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[11] 沈利娟, 张泽锋*. NO2在黑碳表面的非均相反应[J]. 化学进展, 2013, 25(01): 28-35.
[12] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.
[13] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
[14] 谢绍东 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制*[J]. 化学进展, 2010, 22(04): 727-733.
[15] 张泽锋,朱彤,赵德峰,李宏军. NO2在矿物颗粒物表面的非均相反应*[J]. 化学进展, 2009, 21(0203): 282-287.