English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1188-1200 DOI: 10.7536/PC200716 前一篇   后一篇

• 综述 •

室温催化分解空气中臭氧污染物

李连欣1, 曹冉冉1, 张彭义1,2,*()   

  1. 1 清华大学环境学院 环境模拟与污染控制国家重点实验室 北京 100084
    2 室内空气质量评价与控制北京市重点实验室 北京 100084
  • 收稿日期:2020-07-09 修回日期:2020-11-05 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 张彭义

Catalytic Decomposition of Gaseous Ozone at Room Temperature

Lianxin Li1, Ranran Cao1, Pengyi Zhang1,2,*()   

  1. 1 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    2 Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China
  • Received:2020-07-09 Revised:2020-11-05 Online:2021-07-20 Published:2020-12-28
  • Contact: Pengyi Zhang
  • About author:
    * Corresponding anthor e-mail:

臭氧污染是我国目前面临的突出环境问题,臭氧及其室内反应形成的二次污染物危害着人体健康。室温催化分解是避免空气臭氧污染的有效方法,本文首先总结了碳、沸石、贵金属与过渡金属氧化物等材料的臭氧催化分解性能;然后聚焦锰氧化物,比较分析了不同锰氧化物的臭氧催化活性,阐述了锰氧化物催化分解臭氧机理的研究进展。水蒸气导致的失活是当前臭氧催化剂研发面临的主要挑战,对臭氧催化分解与失活机理的深入认识是指导高效抗湿臭氧催化材料研发的关键。

Ozone pollution is a serious problem now prevailing in China. Ozone and its secondary pollutants generated indoor severely threaten human health. The catalytic decomposition of ozone at room temperature is an effective way to prevent the pollution. This review firstly summarizes the catalytic activity of carbon, zeolite, noble metal, transitional metal oxides and other materials; then focuses on manganese oxides, compares the activity of manganese oxides with different crystal structures and elaborates the research progress in mechanisms of ozone decomposition on manganese oxides. Currently, the major challenge in this field is the catalyst deactivation caused by water vapor. The comprehensive understanding in mechanisms of ozone decomposition and catalyst deactivation is the essential key to synthesize efficient catalysts.

Contents

1 Introduction

2 Catalysts for ozone decomposition

2.1 Carbon

2.2 Noble metal

2.3 Transitional metal oxides

2.4 Other materials

3 Manganese oxides for ozone decomposition

3.1 α-MnO 2

3.2 γ-MnO 2, ε-MnO 2, ramsdellite and todorokite

3.3 δ-MnO 2

3.4 Amorphous and low-valent manganese oxides

4 Mechanisms of catalytic decomposition of ozone on manganese oxides

4.1 Mechanisms of ozone decomposition

4.2 Mechanisms of catalyst deactivation

4.3 Regeneration and heat treatment of catalyst

5 Conclusion and outlook

()
表1 α-MnO2类臭氧催化材料的制备方法与臭氧催化性能
Table 1 The synthetic methods and the catalytic performance of α-MnO 2
表2 其他隧道结构二氧化锰的制备方法与臭氧催化性能
Table 2 The synthetic methods and the catalytic performance of MnO2 with other tunnel structures
表3 δ-MnO2类臭氧催化材料的制备方法与臭氧催化性能
Table 3 The synthetic methods and catalytic performance of δ-MnO 2
表4 无定形与低价态锰氧化物的制备方法与臭氧催化性能
Table 4 The synthetic methods and catalytic performance of amorphous and low-valent manganese oxides
图1 酸性位与氧空位共同参与的锰氧化物臭氧分解机理[81]
Fig. 1 The mechanism of ozone decomposition involving acid sites and oxygen vacancies[81]. Copyright 2018, Elsevier
图2 基于稳定氧物种中间产物的锰氧化物臭氧催化失活机理[73]
Fig. 2 The mechanism of catalyst deactivation during ozone decomposition on manganese oxides based on the stable oxygen intermediates[73]. Copyright 2019, ACS Publications
图3 基于Mn-OH的锰氧化物臭氧催化失活机理[78]
Fig. 3 The mechanism of catalyst deactivation during ozone decomposition on manganese oxides based on Mn-OH[78]. Copyright 2017, ACS Publications
表5 锰氧化物臭氧催化材料的再生条件与再生效果
Table 5 The regeneration effect of manganese oxides for ozone decomposition
[1]
Wojtowicz J A. Kirk-Othmer Encyclopedia of Chemical Technology. 4th Edition. New York: John Wiley & Sons, 1996.40.
[2]
Parson E A. Protecting the Ozone Layer: Science and Strategy. New York: Oxford Univ. Press, 2003.
[3]
Liu H, Liu S, Xue B R, Lv Z, Meng Z H, Yang X F, Xue T, Yu Q, He K B. Atmos. Environ., 2018, 173:223.

doi: 10.1016/j.atmosenv.2017.11.014     URL    
[4]
Zhang J J, Wei Y J, Fang Z F. Front. Immunol., 2019, 10:2518.

doi: 10.3389/fimmu.2019.02518     URL    
[5]
Amoatey P, Takdastan A, Sicard P, Hopke P K, Baawain M, Omidvarborna H, Allahyari S, Esmaeilzadeh Ade Marco A, Khanaibadi Y O. Hum. Ecol. Risk Assess.: Int. J., 2019, 25(5):1336.

doi: 10.1080/10807039.2018.1492872     URL    
[6]
Huang J, Song Y, Chu M T, Dong W, Miller M R, Loh M, Xu J H, Yang D, Chi R, Yang X, Wu S W, Guo X B, Deng F R. Environ. Int., 2019, 131:105021.

doi: S0160-4120(19)31430-8     pmid: 31349208
[7]
Malley C S, Henze D K, Kuylenstierna J C I, Vallack H W, Davila Y, Anenberg S C, Turner M C, Ashmore M R. Environ. Heal. Perspect., 2017, 125(8):087021.

doi: 10.1289/EHP1390     URL    
[8]
Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H. PNAS, 2019, 116(2):422.

doi: 10.1073/pnas.1812168116     URL    
[9]
Ma Z Q, Xu J, Quan W J, Zhang Z Y, Lin W L, Xu X B. Atmos. Chem. Phys., 2016, 16(6):3969.

doi: 10.5194/acp-16-3969-2016     URL    
[10]
China National Environmental Monitoring Centre. National Urban Air Quality Report(2018.08).
(中国环境监测总站. 2018年8月全国城市空气质量报告),(2018-11-16). [2020-7-3]. http://www.cnemc.cn/jcbg/kqzlzkbg/201811/t20181116_674139.shtml.
[11]
China National Environmental Monitoring Centre. National Urban Air Quality Report(2019.07).
(中国环境监测总站. 2019年7月全国城市空气质量报告). http://www.cnemc.cn/jcbg/kqzlzkbg/201912/t20191217_751489.shtml.
[12]
China National Environmental Monitoring Centre. National Urban Air Quality Report(2019.08).
(中国环境监测总站. 2019年8月全国城市空气质量报告). http://www.cnemc.cn/jcbg/kqzlzkbg/201912/t20191217_751490.shtml.
[13]
Stephens B, Gall E T, Siegel J A. Environ. Sci. Technol., 2012, 46(2):929.

doi: 10.1021/es2028795     pmid: 22146069
[14]
Guo C, Gao Z, Shen J L. Build. Environ., 2019, 158:302.

doi: 10.1016/j.buildenv.2019.05.024     URL    
[15]
Yang Z. Master Dissertation of Nanjing University, 2019.
( 杨喆. 南京大学硕士论文, 2019.)
[16]
Vaida V, Rasele G. J. Environ. Eng. Landsc. Manage., 2007, ⅩⅤ( 2):61.
[17]
Weisel C, Weschler C J, Mohan K, Vallarino J, Spengler J D. Environ. Sci. Technol., 2013, 47(9):4711.

doi: 10.1021/es3046795     URL    
[18]
Bhangar S, Cowlin S C, Singer B C, Sextro R G, Nazaroff W W. Environ. Sci. Technol., 2008, 42(11):3938.

pmid: 18589948
[19]
Cheng Y H, Lin C C, Hsu S C. Build. Environ., 2015, 87:274.

doi: 10.1016/j.buildenv.2014.12.025     URL    
[20]
Xiong J Y, He Z C, Tang X C, Misztal P K, Goldstein A H. Environ. Sci. Technol., 2019, 53(14):8262.

doi: 10.1021/acs.est.9b02302     URL    
[21]
Coleman B K, Lunden M M, Destaillats H, Nazaroff W W. Atmos. Environ., 2008, 42(35):8234.

doi: 10.1016/j.atmosenv.2008.07.031     URL    
[22]
Hubbard H F, Coleman B K, Sarwar G, Corsi R L. Indoor Air, 2005, 15(6):432.

pmid: 16268833
[23]
Jones A P. Atmos. Environ., 1999, 33(28):4535.

doi: 10.1016/S1352-2310(99)00272-1     URL    
[24]
Lin C C, Chao C Y, Liu M Y. J. Ind. Eng. Chem., 2010, 16(1):140.

doi: 10.1016/j.jiec.2010.01.005     URL    
[25]
Hellén H, Kuronen P, Hakola H. Atmos. Environ., 2012, 57:35.

doi: 10.1016/j.atmosenv.2012.04.019     URL    
[26]
Subrahmanyam C, Bulushev D A, Kiwi-Minsker L. Appl. Catal. B: Environ., 2005, 61(1/2):98.

doi: 10.1016/j.apcatb.2005.04.013     URL    
[27]
Álvarez P M, Masa F J, Jaramillo J, Beltrán F J, Gómez-Serrano V. Ind. Eng. Chem. Res., 2008, 47(8):2545.

doi: 10.1021/ie071360z     URL    
[28]
Ondarts M, Outin J, Reinert L, Gonze E, Duclaux L. Eur. Phys. J. Spec. Top., 2015, 224(9):1995.

doi: 10.1140/epjst/e2015-02516-6     URL    
[29]
Yang S, Nie J Q, Wei F, Yang X D. Environ. Sci. Technol., 2016, 50(17):9592.

doi: 10.1021/acs.est.6b02563     URL    
[30]
Yu Q W, Pan H, Zhao M, Liu Z M, Wang J L, Chen Y Q, Gong M C. J. Hazard. Mater., 2009, 172(2/3):631.

doi: 10.1016/j.jhazmat.2009.07.040     URL    
[31]
Tao L G, Zhang Z Q, Chen P J, Zhao G F, Liu Y, Lu Y. Appl. Surf. Sci., 2019, 481:802.

doi: 10.1016/j.apsusc.2019.03.134     URL    
[32]
Yu Q W, Zhao M, Liu Z M, Zhang X Y, Zheng L M, Chen Y Q, Gong M C. Chin. J. Catal., 2009, 30(1):1.

doi: 10.1016/S1872-2067(08)60082-0     URL    
[33]
Ren C J, Zhou L N, Shang H Y, Chen Y Q. Chin. J. Catal., 2014, 35(11):1883.

doi: 10.1016/S1872-2067(14)60176-5     URL    
[34]
Kameya T, Urano K. J. Environ. Eng., 2002, 128(3):286.

doi: 10.1061/(ASCE)0733-9372(2002)128:3(286)     URL    
[35]
Chang C L, Lin T S. React. Kinetics Catal. Lett., 2005, 86(1):91.
[36]
Zhang P Y, Zhang B, Shi R. Front. Environ. Sci. Eng. China, 2009, 3(3):281.

doi: 10.1007/s11783-009-0032-5     URL    
[37]
Lejeune A, Cabrol A, Lebullenger R, Denicourt-Nowicki A, Roucoux A, Szymczyk A, Couvert A, Biard P F. ACS Sustainable Chem. Eng., 2020, 8(7):2854.

doi: 10.1021/acssuschemeng.9b06950     URL    
[38]
Dhandapani B, Oyama S T. Appl. Catal. A, 1997, 11(2):129.
[39]
Nikolov P, Genov K, Konova P, Milenova K, Batakliev T, Georgiev V, Kumar N, Sarker D K, Pishev D, Rakovsky S. J. Hazard. Mater., 2010, 184(1/3):16.

doi: 10.1016/j.jhazmat.2010.07.056     URL    
[40]
Li X T, Ma J Z, Zhang C B, Zhang R D, He H. J. Environ. Sci., 2019, 80:159.

doi: 10.1016/j.jes.2018.12.008     URL    
[41]
Li X T, Ma J Z, He H. Environ. Sci. Technol., 2020, 54(18):11566.

doi: 10.1021/acs.est.0c02510     URL    
[42]
Mathew T, Suzuki K, Ikuta Y, Nagai Y, Takahashi N, Shinjoh H. Angew. Chem. Int. Ed., 2011, 50(32):7381.

doi: 10.1002/anie.v50.32     URL    
[43]
Patzsch J, Bloh J Z. Catal. Today, 2018, 300:2.

doi: 10.1016/j.cattod.2017.07.010     URL    
[44]
Gong S Y, Wu X F, Zhang J L, Han N, Chen Y F. CrystEngComm, 2018, 20(22):3096.

doi: 10.1039/C8CE00203G     URL    
[45]
Gong S Y, Wang A Q, Wang Y, Liu H D, Han N, Chen Y F. ACS Appl. Nano Mater., 2020, 3(1):597.

doi: 10.1021/acsanm.9b02143     URL    
[46]
Gong S Y, Xie Z, Li W M, Wu X F, Han N, Chen Y F. Appl. Catal. B: Environ., 2019, 241:578.

doi: 10.1016/j.apcatb.2018.09.041     URL    
[47]
Gong S Y, Chen J Y, Wu X F, Han N, Chen Y F. Catal. Commun., 2018, 106:25.

doi: 10.1016/j.catcom.2017.12.003     URL    
[48]
Valdés H, Alejandro S, Zaror C A. J. Hazard. Mater., 2012, (227/228):34.
[49]
Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdés H. Chem. Eng. J., 2013, 231:281.

doi: 10.1016/j.cej.2013.07.002     URL    
[50]
Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdés H. Can. J. Chem. Eng., 2018, 96(9):1911.

doi: 10.1002/cjce.v96.9     URL    
[51]
Valdés H, Ulloa F J, Solar V A, Cepeda M S, Azzolina-Jury F, Thibault-Starzyk F. Microporous Mesoporous Mater., 2020, 294:109912.

doi: 10.1016/j.micromeso.2019.109912     URL    
[52]
Wang H, Rassu P, Wang X, Li H W, Wang X R, Wang X Q, Feng X, Yin A X, Li P F, Jin X, Chen S L, Ma X J, Wang B. Angew. Chem. Int. Ed., 2018, 57(50):16416.

doi: 10.1002/anie.201810268     URL    
[53]
Dhandapani B, Oyama S T. Chem. Lett., 1995, 24(6):413.

doi: 10.1246/cl.1995.413     URL    
[54]
Li W, Gibbs G V, Oyama S T. J. Am. Chem. Soc., 1998, 120(35):9041.

doi: 10.1021/ja981441+     URL    
[55]
Li W, Oyama S T. J. Am. Chem. Soc., 1998, 120(35):9047.

doi: 10.1021/ja9814422     URL    
[56]
Radhakrishnan R, Oyama S T. J. Catal., 2001, 199(2):282.

doi: 10.1006/jcat.2001.3167     URL    
[57]
Radhakrishnan R, Oyama S T, Chen J G G, Asakura K. J. Phys. Chem. B, 2001, 105(19):4245.

doi: 10.1021/jp003246z     URL    
[58]
Heisig C, Zhang W, Oyama S T. Appl. Catal. B, 1997, 14(1/2):117.

doi: 10.1016/S0926-3373(97)00017-9     URL    
[59]
Jiang C J, Zhang P Y, Zhang B, Li J G, Wang M X. Ozone: Sci. Eng., 2013, 35(4):308.

doi: 10.1080/01919512.2013.795854     URL    
[60]
Wang M X, Zhang P Y, Li J G, Jiang C J. Chin. J. Catal., 2014, 35(3):335.

doi: 10.1016/S1872-2067(12)60756-6     URL    
[61]
Besenhard J O. Handbook of Battery Materials. Germany: Wiley-VCH, 1999.
[62]
Jia J B, Zhang P Y, Chen L. Appl. Catal. B: Environ., 2016, 189:210.

doi: 10.1016/j.apcatb.2016.02.055     URL    
[63]
Jia J B, Zhang P Y, Chen L. Catal. Sci. Technol., 2016, 6(15):5841.

doi: 10.1039/C6CY00301J     URL    
[64]
Yang Y J, Jia J B, Liu Y, Zhang P Y. Appl. Catal. A: Gen., 2018, 562:132.

doi: 10.1016/j.apcata.2018.06.006     URL    
[65]
Yang Y J, Zhang P Y, Jia J B. Appl. Surf. Sci., 2019, 484:45.

doi: 10.1016/j.apsusc.2019.04.084     URL    
[66]
Wang C X, Ma J Z, Liu F D, He H, Zhang R D. J. Phys. Chem. C, 2015, 119(40):23119.

doi: 10.1021/acs.jpcc.5b08095     URL    
[67]
Ma J, Wang C, He H. Appl. Catal. B, 2017, 201:503.

doi: 10.1016/j.apcatb.2016.08.050     URL    
[68]
Yang L, Ma J Z, Li X T, Zhang C B, He H. Ind. Eng. Chem. Res., 2020, 59(1):118.

doi: 10.1021/acs.iecr.9b05967     URL    
[69]
Peng B, Bao W J, Wei L L, Zhang R D, Wang Z J, Wang Z C, Wei Y. Petroleum Sci., 2019, 16(4):912.

doi: 10.1007/s12182-019-0335-5     URL    
[70]
Yang L, Ma J, Li X, He G, Zhang C, He H. J. Environ. S., 2020, 87:60.
[71]
Zhu G X, Zhu J G, Jiang W J, Zhang Z J, Wang J, Zhu Y F, Zhang Q F. Appl. Catal. B: Environ., 2017, 209:729.

doi: 10.1016/j.apcatb.2017.02.068     URL    
[72]
Zhu G X, Zhu J G, Li W L, Yao W Q, Zong R L, Zhu Y F, Zhang Q F. Environ. Sci. Technol., 2018, 52(15):8684.

doi: 10.1021/acs.est.8b01594     URL    
[73]
Hong W, Zhu T L, Sun Y, Wang H N, Li X, Shen F X. Environ. Sci. Technol., 2019, 53(22):13332.

doi: 10.1021/acs.est.9b03689     pmid: 31642660
[74]
Jia J B, Yang W J, Zhang P Y, Zhang J Y. Appl. Catal. A: Gen., 2017, 546:79.

doi: 10.1016/j.apcata.2017.08.013     URL    
[75]
Li X T, Ma J Z, Yang L, He G Z, Zhang C B, Zhang R D, He H. Environ. Sci. Technol., 2018, 52(21):12685.

doi: 10.1021/acs.est.8b04294     URL    
[76]
Chen X, Zhao Z L, Liu S, Huang J X, Xie J, Zhou Y, Pan Z Y, Lu H F. J. Rare Earths, 2020, 38(2):175.

doi: 10.1016/j.jre.2019.01.010     URL    
[77]
Liu Y, Zhang P Y. Appl. Catal. A: Gen., 2017, 530:102.

doi: 10.1016/j.apcata.2016.11.028     URL    
[78]
Liu Y, Zhang P Y. J. Phys. Chem. C, 2017, 121(42):23488.

doi: 10.1021/acs.jpcc.7b07931     URL    
[79]
Hong W, Shao M P, Zhu T L, Wang H N, Sun Y, Shen F X, Li X. Appl. Catal. B: Environ., 2020, 274:119088.

doi: 10.1016/j.apcatb.2020.119088     URL    
[80]
Gopi T, Swetha G, Chandra Shekar S, Ramakrishna C, Saini B, Krishna R, Rao P V L. Catal. Commun., 2017, 92:51.

doi: 10.1016/j.catcom.2017.01.002     URL    
[81]
Liu Y, Yang W J, Zhang P Y, Zhang J Y. Appl. Surf. Sci., 2018, 442:640.

doi: 10.1016/j.apsusc.2018.02.204     URL    
[82]
Cao R R, Zhang P Y, Liu Y, Zheng X M. Appl. Surf. Sci., 2019, 495:143607.

doi: 10.1016/j.apsusc.2019.143607     URL    
[83]
Liu S L, Ji J, Yu Y, Huang H B. Catal. Sci. Technol., 2018, 8(16):4264.

doi: 10.1039/C8CY01111G     URL    
[84]
Ji J, Fang Y, He L S, Huang H B. Catal. Sci. Technol., 2019, 9(15):4036.

doi: 10.1039/C9CY00762H     URL    
[85]
Lian Z H, Ma J Z, He H. Catal. Commun., 2015, 59:156.

doi: 10.1016/j.catcom.2014.10.005     URL    
[86]
Li L X, Zhang P Y, Cao R R. Catal. Sci. Technol., 2020, 10(7):2254.

doi: 10.1039/D0CY00196A     URL    
[87]
Yu Y, Liu S L, Ji J, Huang H B. Catal. Sci. Technol., 2019, 9(18):5090.

doi: 10.1039/C9CY01426H     URL    
[88]
Ma J, Li X, Zhang C, Ma Q, He H. Appl. Catal. B, 2020,264.
[89]
Tatibouët J M, Valange S, Touati H. Appl. Catal. A: Gen., 2019, 569:126.

doi: 10.1016/j.apcata.2018.10.026     URL    
[90]
Einaga H, Harada M, Futamura S. Chem. Phys. Lett., 2005, 408(4/6):377.

doi: 10.1016/j.cplett.2005.04.061     URL    
[91]
Yang Y J, Shen D, Zhang P Y. Ozone: Sci. Eng., 2021, 43(2):195.

doi: 10.1080/01919512.2020.1772040     URL    
[1] 曾小珊, 单传家, 孙铭第, 何陶宏, 荣少鹏. 二氧化锰催化分解室内空气中甲醛的研究[J]. 化学进展, 2021, 33(12): 2245-2258.
[2] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[3] 楚碧武, 马庆鑫, 段凤魁, 马金珠, 蒋靖坤, 贺克斌, 贺泓. 大气“霾化学”:概念提出和研究展望[J]. 化学进展, 2020, 32(1): 1-4.
[4] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[5] 朱瑾, 楼子墨, 王卓行, 徐新华. 铁锰氧化物/碳基复合材料的制备及其对水中砷的去除[J]. 化学进展, 2014, 26(09): 1551-1561.
[6] 李孟丽, 杨晓龙*, 唐立平, 熊绪茂, 任嗣利, 胡斌*. N2O的催化分解研究[J]. 化学进展, 2012, (9): 1801-1817.
[7] 徐武军 张国臣 郑明霞 陈健 王凯军. 臭氧氧化技术处理含抗生素废水*[J]. 化学进展, 2010, 22(05): 1002-1009.
[8] 葛茂发,马春平. 活性卤素化学*[J]. 化学进展, 2009, 21(0203): 307-334.
[9] 马涛,王睿. NOx的催化分解研究*[J]. 化学进展, 2008, 20(06): 798-810.
[10] 贾龙,葛茂发,徐永福,杜林,庄国顺,王殿勋. 大气臭氧化学研究进展*[J]. 化学进展, 2006, 18(11): 1565-1574.
[11] 王振亚,周士康,盛六四. 极地平流层云及其非均相化学*[J]. 化学进展, 2004, 16(01): 49-.
[12] 林永达,陈庆云. 大气臭氧层破坏和CFCs替代物[J]. 化学进展, 1998, 10(02): 228-.
阅读次数
全文


摘要

室温催化分解空气中臭氧污染物