English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 817-835 DOI: 10.7536/PC190931 前一篇   后一篇

• 综述与评论 •

界面修饰策略在钙钛矿太阳能电池中的应用

孟凡宁1, 刘彩云1, 高立国1,**(), 马廷丽2,3,**()   

  1. 1. 大连理工大学化工学院 精细化工国家重点实验室 大连 116023
    2. 中国计量大学 材料科学与工程学院 杭州 310018
    3. 九州工业大学生命体工学科 研究生院 福冈县北九州市 808-0196 日本
  • 收稿日期:2019-09-27 修回日期:2020-01-21 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 高立国, 马廷丽
  • 作者简介:
    ** Corresponding author e-mail: (Liguo Gao); (Tingli Ma)
  • 基金资助:
    国家自然科学基金项目(51772039, 21703027, 51273032)

Strategies for Interfacial Modification in Perovskite Solar Cells

Fanning Meng1, Caiyun Liu1, Liguo Gao1,**(), Tingli Ma2,3,**()   

  1. 1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
    2. Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
    3. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
  • Received:2019-09-27 Revised:2020-01-21 Online:2020-06-05 Published:2020-04-13
  • Contact: Liguo Gao, Tingli Ma
  • Supported by:
    the National Natural Science Foundation of China(51772039, 21703027, 51273032)

目前钙钛矿太阳能电池的认证效率已达25.2%,被认为是下一代最有希望的薄膜太阳能电池候选者。但通过溶液加工方法制备的钙钛矿薄膜不可控的形貌与较差的结晶性是制约器件稳定性提升和大面积生产的主要原因。为了有效解决这一难题,研究者们通常在电荷传输层与钙钛矿层之间进行界面修饰。本文从界面修饰的角度出发,总结了不同界面修饰策略在钙钛矿太阳能电池中的应用,并展望了界面修饰在低成本和大面积钙钛矿太阳能电池的应用前景。

Recently, the certified efficiency of perovskite solar cells(PSCs) has reached 25.2%, which are considered to be the most promising candidate for next-generation thin-film solar cells. However, uncontrollable film morphology and poor crystallinity of perovskite prepared by the solution process restrict the improvement of stability and large-area production of PSCs. To solve this problem, researchers have carried out the interfacial modification between perovskite layer and charge transport layer. Herein, we summarize applications of strategies for interfacial modification in perovskite solar cells from the perspective of methods, materials, and characterization. Meanwhile, the promising prospects of interfacial modification in low-cost and large-area PSCs are provided.

Contents

1 Introduction
2 Structure of PSCs
3 Effect of interfacial modification on PSCs
4 Strategies for interfacial modification

4.1 Methods

4.2 Materials

4.3 Characterization

5 Conclusion and outlook
()
图1 (a)常规n-i-p器件结构示意;(b)常规p-i-n器件结构示意[51]
Fig. 1 (a) Schematic of regular(n-i-p) architecture;(b) Schematic of regular(p-i-n) architecture[51]. Copyright 2018, WILEY-VCH
图2 LiF/PbF2用于PSCs的SnO2/PVK界面修饰[63]
Fig. 2 Structure of the PSCs with LiF/PbF2 interfacial modification at SnO2/PVK interface[63]. Copyright 2018, Royal Society of Chemistry
图3 (a)KCL薄膜(150 mg·mL-1 KCl 溶液制备)的俯视SEM图;(b)PVK前驱液涂层后KCl薄膜的俯视图,标尺约3 μm;(c)PVK中K+/Cl-移动的示意图[64]
Fig. 3 Top view SEM images of (a) KCl thin film(treated with 150 mg·mL-1 KCl solution) and (b) that coated with perovskite precursor solution: scale bars ~3 μm.(c) A schematic diagram of K+/Cl- movement in PVK[64]. Copyright 2018, Royal Society of Chemistry
图4 (a)通过黄原酸盐热处理的S功能化ETL;(b)相应器件界面结构[65]
Fig. 4 (a) Sulfur-functionalized electron transport layer via xanthate annealing;(b) Interfacial structure of the corresponding device[65]. Copyright 2018, WILEY-VCH
图5 使用分子自组装单层修饰的SnO2 ETL的PSC[67]
Fig. 5 Schematic diagram of a PSC based on the self-assembled monolayer modified SnO2 ETL[67]. Copyright 2017, Royal Society of Chemistry
图6 (a) 多巴胺修饰层的制备方法;(b) SnO2与PVK之间的多巴胺自组装单分子层示意图;(c)典型的器件结构[68]
Fig. 6 (a) Preparation process of dopamine modi?cation layer;(b) Schematic diagram of the dopamine self-assembly between SnO2 and PVK; and(c) Typical device structure[68]. Copyright 2018, American Chemical Society
图7 (a)PSC结构的示意图;(b)电荷转移和传输途径,其中Al2O3作为阻挡底层[44]
Fig. 7 (a) Scheme of PSC structure;(b) Charge transfer and transport pathways in PSCs with Al2O3 as blocking underlayer[44]. Copyright 2017, WILEY-VCH
表1 不同界面修饰方法制备PSCs的光伏参数
Table 1 The photovoltaic parameters of PSCs fabricated via different methods for interfacial modification
图8 透明聚合物用于PSCs的界面修饰[35,36,38]。(a)PMMA修饰HTL/Ag界面[35];(b)PS绝缘层修饰PVK/ETL界面 [36];(c) SWCNT/GO/PMMA修饰PVK/Ag界面[38]
Fig. 8 Application of transparent polymer for interfacial modification in PSCs[35,36,38].(a) PMMA modifying the interface of HTL/Ag[35], Ref 35 Copyright 2014, American Chemical Society;(b) PS insulating layer modifying the interface of PVK/ETL[36], Ref 36 Copyright 2016, WILEY-VCH;(c) SWCNT/GO/PMMA modifying the interface of PVK/Ag[38], Ref 38 Copyright 2016, Royal Society of Chemistry
图9 PSCs(a)不带和(b)带PMMA层的PSCs载流子传输动力学示意图[46]
Fig. 9 Schematics of the carrier dynamics model in PSCs(a) without and(b) with a PMMA layer[46]. Copyright 2017, American Chemical Society
图10 PSCs(a)器件结构示意图; (b)PMMA链上所有官能团静电势的第一性原理密度泛函理论计算示意图[48]
Fig. 10 (a) Schematic of the device structure;(b) Schematic diagram of the first-principle density functional theory calculation of the electrostatic potential for all functional groups on the PMMA chain[48]. Copyright 2018, WILEY-VCH
图11 用于PSCs界面修饰的纳米碳材料分子结构示意图,(a)富勒烯衍生物α-bis-PCBM[43];(b)功能化氧化石墨烯[73];(c)石墨炔[74];(d)功能化碳量子点[77]
Fig. 11 Schematic diagram of molecular structures of carbon nanomaterials for interfacial modification in PSCs,(a) α-bis-PCBM[43],(b) functionalized graphene oxide[73],(c) graphdiyne[74],(d) functionalized carbon quantum dots[77]. Ref 43 Copyright 2017, WILEY-VCH; Ref 73 Copyright 2016, Royal Society of Chemistry; Ref 74 Copyright 2015, WILEY-VCH; Ref 77 Copyright 2017, American Chemical Society
图12 p-i-n结构平板PSC的器件结构;用作ETL的富勒烯的化学结构和用于NiO阳极表面修饰的二乙胺醇的化学结构;器件的能级图[71]
Fig. 12 The device configuration of inverted planar PSCs; The chemical structures of the fullerenes used as the ETL and the diethanolamine surface modifier used for NiO anode modification; Energy levels of the device[71]. Copyright 2016, WILEY-VCH
图13 陷阱位置的可能属性以及路易斯碱噻吩和吡啶的钝化机制。 (a)钙钛矿表面的碘缺失导致的空位(空心盒)和留在Pb原子上的净正电荷(以绿色显示)。然后,光生电子能够落入该库仑陷阱位置,从而中和电荷并使晶体更稳定。(b)噻吩或吡啶分子可以向Pb提供电子密度并形成配位或配位共价键,有效地中和晶体中过量的正电荷[82]
Fig. 13 Possible nature of trap sites and proposed passivation mechanism. (a) Loss of iodine at the surface of the perovskite leads to vacancy sites(hollow boxes) and a resulting net positive charge residing on the Pb atom(shown in green). Photogenerated electrons are then able to fall into this Coulomb trap site, thus neutralizing the charge and rendering the crystal more stable. (b) Thiophene or pyridine molecules can donate electron density to the Pb and form a coordinate or dative covalent bond, effectively neutralizing the excess positive charge in the crystal[82]. Copyright 2014, American Chemical Society
图14 (a)CsPbI3钙钛矿薄膜的Br梯度掺杂和PTA或有机阳离子表面钝化的示意图;(b)在N2手套箱中80 ℃加热72 h的CsPbI3和PTABr-CsPbI3薄膜的XRD图谱演变;(c)在约35 ℃暴露于80%±5% RH下0.5 h的PTABr-CsPbI3和CsPbI3薄膜的XRD图谱演变;插图是相应的照片[88]
Fig. 14 (a) Schematic illustration of gradient Br doping and PTA organic cation surface passivation on CsPbI3 PVK thin film. XRD patterns evolution of (b) CsPbI3 and PTABr-CsPbI3 thin films heated 80 ℃ in a N2 glovebox for 72 h and(c) PTABr-CsPbI3 and CsPbI3 thin films after exposed to 80%±5% RH at ~35 ℃ for 0.5 h; inset is their photographs[88]. Copyright 2018, American Chemical Society
图15 由ZIF-8的甲基交联的两个相邻晶粒结构的示意图[92]
Fig. 15 Schematic illustration of two neighboring grain structures cross-linked by methyl groups of ZIF-8[92]. Copyright 2018, Royal Society of Chemistry
图16 PCBM/CeO x 双层ETL结构用于p-i-n结构PSCs界面修饰的示意图[93]
Fig. 16 Schematic illustration of PCBM/CeO x ETL composite for interfacial modification in p-i-n structural PSC[93]. Copyright 2018, American Chemical Society
图17 基于(a)SnO2,(b)SnO2/S1(处理一次),(c)SnO2/S3(处理三次),(d)SnO2/S5(处理五次)的PVK薄膜的SEM图像;下方是对应的PVK晶粒尺寸统计的柱状图[65]
Fig. 17 SEM images of PVK films based on (a) SnO2, (b) SnO2/S1(one time treatment),(c) SnO2/S3(three times treatment),(d) SnO2/S5(five times treatment); Column graphs of PVK grain size statistics are shown below correspondingly[65]. Copyright 2018, Wiley-VCH
表2 不同界面修饰材料制备PSCs的光伏参数
Table 2 The photovoltaic parameters of PSCs fabricated via different materials for interfacial modification
No. Material Device<break/>structure Interface V oc(V) J sc (mA·cm-2) FF PCE(%) ref
1 PMMA p-i-n PVK/ETL 0.888 17.0 0.62 9.70 34
2 PMMA n-i-p HTL/Ag 1.02 22.71 0.66 15.30 35
3 PS p-i-n PVK/ETL 1.10 22.9 0.806 20.30 36
4 PMMA n-i-p PVK/HTL 1.13 23.7 0.77 21.30 37
5 SWCNT/GO/PMMA n-i-p PVK/HTL 0.97 17.7 0.6 10.40 38
6 PMMA/PCBM n-i-p ETL/PVK 1.16 23.1 0.762 20.40 47
7 PMMA n-i-p ETL/PVK 1.213 22.6 0.761 20.86 48
8 PS n-i-p PVK/HTL 1.09 23.56 0.787 20.20 49
9 α-bis-PCBM n-i-p ETL/PVK 1.13 23.95 0.74 20.80 43
10 C60(CH2)(Ind) p-i-n PVK/ETL 1.13 20.4 0.8 18.10 71
11 Functionalized graphene n-i-p PVK/HTL 0.95 20.58 0.658 12.81 72
12 Functionalized graphene n-i-p PVK/HTL 0.94 23.6 0.658 14.60 73
13 Graphdiyne n-i-p PVK/HTL 0.941 21.7 0.713 14.58 74
14 Graphdiyne n-i-p ETL/PVK 1.128 22.73 0.79 20.55 75
15 Graphdiyne quantum dots n-i-p PVK/HTL 1.124 22.48 0.787 19.89 76
16 Carbon quantum dots n-i-p ETL/PVK 1.136 21.36 0.78 18.89 77
17 Carbon nanoparticles n-i-p PVK/HTL 1.16 22.1 0.71 18.30 78
18 Pyridine n-i-p ETL/PVK 1.15 22.0 0.73 18.50 81
19 Pyridine n-i-p PVK/HTL 1.05 24.1 0.72 16.50 82
20 Thiophene n-i-p PVK/HTL 1.02 21.3 0.68 15.30 82
21 IPFB n-i-p PVK/HTL 1.06 23.38 0.67 15.70 83
22 4-DMABA p-i-n PVK/ETL 1.11 19.87 0.8 19.87 84
23 Formamide n-i-p PVK/HTL 1.17 16.90 0.81 15.86 85
24 PEAI n-i-p PVK/HTL 1.11 18.5 0.696 14.3 86
25 FAL n-i-p PVK/HTL 1.08 22.79 0.756 18.60 87
26 PTABr n-i-p ETL/PVK 1.104 18.76 0.806 17.06 88
27 BrBeAI n-i-p PVK/HTL 1.25 15.33 0.763 14.63 89
28 TMAH n-i-p ETL/PVK 1.17 23.22 0.739 20.1 90
29 CTAB n-i-p PVK/HTL 1.11 23.20 0.74 18.95 91
30 ZIF-8 n-i-p ETL/PVK 1.02 22.82 0.73 16.99 92
31 CeO x p-i-n PVK/ETL 1.115 21.82 0.768 18.69 93
32 CoO n-i-p PVK/HTL 1.181 23.19 0.7568 20.70 94
33 TX p-i-n HTL/PVK 1.094 23.10 0.7498 16.23 95
34 Pr-ITC, Ph-DITC n-i-p PVK/HTL 1.068 22.85 0.7608 18.57 96
35 SmBr3 n-i-p ETL/PVK 1.17 12.75 0.73 10.88 97
36 PTFTS p-i-n HTL/PVK 1.10 20.89 0.819 18.82 98
37 Ca(acac)2 p-i-n ETL/Ag 1.086 23.45 0.7914 20.15 99
38 TFTPA p-i-n PVK/ETL 1.13 21.41 0.802 19.39 100
图18 PSCs的截面SEM图,其中FAPbI3 薄膜使用FAI·PbI2·(DMSO1- x thiourea x ) 加合物制备其中(a, c)x=0,(b, d)x=0.2[80]
Fig. 18 Cross-sectional SEM images of PSCs incorporating FAPbI3 films prepared using the FAI·PbI2·(DMSO1- x thiourea x ) adducts(a,c) without(x=0) and(b,d) with thiourea(x=0.2)[80]. Copyright 2016, American Chemical Society
图19 PVK薄膜的AFM形貌图和晶界上的相应高度分布图((a,d)无PS界面修饰;(b,e)含PS-5界面修饰和(c,f)PS-5界面修饰膜用氯苯彻底冲洗后)[49]
Fig. 19 AFM morphology images and corresponding height profiles across grain boundaries of the perovskite films((a, d) without;(b, e) with PS-5 and(c, f) PS-5 film thoroughly washed with chlorobenzene)[49]. Copyright 2018, Elsevier Ltd
图20 (a, b)原始MAPbI3膜和(c, d)4-DMABA修饰的MAPbI3膜的原位pc-AFM光电流映射结果和相应的形貌信息以及老化时间。(a~d)中的比例尺为1 μm。虚线正方形框突出显示了在pc-AFM测试过程中薄膜的相同区域(位置偏移)。(e)在老化之前和之后,两种MAPbI3薄膜的光学图像,及相关光和湿度的测试条件。(f)两种MAPbI3膜在黑暗中于环境条件下放置1个月后的pc-AFM光电流映射结果和相应的形貌信息[84]
Fig. 20 The in situ pc-AFM photocurrent mapping results and corresponding topography information along with aging time for (a, b) the pristine MAPbI3 film and (c, d) the 4-DMABA modified MAPbI3 film. The scale bars in(a~d) are 1 μm. The dashed squares highlight the same region(position shifted) of the films during pc-AFM tests.(e) Optical images of the two kind MAPbI3 films before and after several hours of aging. The test conditions regarding light and humidity are given.(f) The pc-AFM photocurrent mapping results and corresponding topography information of the two kinds of MAPbI3 film after keeping them under ambient conditions in the dark for 1 month[84]. Copyright 2018, Royal Society of Chemistry
图21 FAL钝化的PVK表面的偶极子排列。(a)不采用FAL处理的PVK薄膜的KPFM图;(b)采用非真空热蒸气辅助胶体工艺FAL钝化的PVK表面的KPFM图;(c)采用溶液处理工艺FAL钝化的PVK表面的KPFM图[87]
Fig. 21 Dipole alignment of FAL-passivated perovskite films. KPFM images of perovskite film (a) before and after FAL passivation using (b) vacuum-free hot vapor assisted colloidal process and(c) solution process[87]. Copyright 2018, WILEY-VCH
图22 (a)原始MAPbI3的μ-PL Maping;(b)N2气氛中恢复的吡啶蒸气漂白后重结晶的MAPbI3的μ-PL Maping[81]
Fig. 22 μ-Photoluminescence mapping of as prepared MAPbI3(a), and after bleaching and recrystallization of MAPbI3 recovered in N2 atmosphere(b), dark color represents photoluminescence intensity average 10 000 counts while the bright color indicates enhanced intensity, average 150 000 counts[81]. Copyright 2016, Royal Society of Chemistry
图23 (a)SnO2和SnO2/S基底制备的PVK薄膜的PL谱;(b)SnO2和SnO2/S基底制备的PVK薄膜的TRPL谱;(c)SnO2和SnO2/S基底制备MAPbI3 PSCs根据等效电路拟合后的EIS谱[65]
Fig. 23 (a) PL spectra of PVK film on SnO2 or SnO2/S substrates;(b) TRPL of PVK based on the SnO2 substrate with and without sulfur functionalization;(c) EIS of MAPbI3 PSCs with fitting results under the equivalent circuit model[65]. Copyright 2018, Wiley-VCH
[1]
Jeon N J , Noh J H , Yang W S , Kim Y C , Ryu S , Seo J , Seok S . Nature, 2015, 517: 476.https://www.ncbi.nlm.nih.gov/pubmed/25561177

doi: 10.1038/nature14133     URL     pmid: 25561177
[2]
Zong Y , Zhou Y , Ju M , Garces H F , Krause A R , Ji F , Cui G , Zeng X C , Padture N P , Pang S. Angew. Chem. Int.Ed., 2016, 55: 14723.
[3]
Wehrenfennig C , Eperon G E , Johnston M B , Snaith H J , Herz L M. Adv. Mater., 2014, 26: 1584.https://www.ncbi.nlm.nih.gov/pubmed/24757716

doi: 10.1002/adma.201305172     URL     pmid: 24757716
[4]
Kojima A , Teshima K , Shirai Y , Miyasaka T .[J]. Am. Chem. Soc., 2009, 131: 6050.https://pubs.acs.org/doi/10.1021/ja809598r

doi: 10.1021/ja809598r     URL    
[5]
Im J H , Lee C R , Lee J W , Park S W , Park N G . Nanoscale, 2011, 3: 4088.https://www.ncbi.nlm.nih.gov/pubmed/21897986

URL     pmid: 21897986
[6]
Kim H S , Lee C R , Im J H , Lee K B , Moehl T , Marchioro A , Moon S J , Humphry-Baker R , Yum J H , Moser J E , Grätzel M , Park N G. Sci. Rep., 2012, 2: 591.https://www.ncbi.nlm.nih.gov/pubmed/22912919

doi: 10.1038/srep00591     URL     pmid: 22912919
[7]
Lee M M , Teuscher J , Miyasaka T , Murakami T N , Snaith H J . Science, 2012, 338: 643.https://www.ncbi.nlm.nih.gov/pubmed/23042296

doi: 10.1126/science.1228604     URL     pmid: 23042296
[8]
Chung I , Lee B , He J , Chang R P , Kanatzidis M G . Nature, 2012, 485: 486.https://www.ncbi.nlm.nih.gov/pubmed/22622574

doi: 10.1038/nature11067     URL     pmid: 22622574
[9]
NREL Best Research-Cell Efficiency Chart.[2020-05-08].https://www.nrel.gov/pv/cell-efficiency.html
[10]
Park N G. Adv. Energy Mater., 2020, 1903106.
[11]
Yang W S , Park B W , Jung E H , Jeon N J , Kim Y C , Lee D U , Shin S S , Seo J , Kim E K , Noh J H , Seok S . Science, 2017, 356: 167.https://www.ncbi.nlm.nih.gov/pubmed/28360134

URL     pmid: 28360134
[12]
Tress W R. Adv. Energy Mater., 2017, 7: 1602358.http://doi.wiley.com/10.1002/aenm.201602358

doi: 10.1002/aenm.201602358     URL    
[13]
Correa-Baena J P , Tress W R , Domanski K , Anaraki E H , Turren-Cruz S H , Roose B , Boix P P , Grätzel M , Saliba M , Abate A , Hagfeldt A . Energy Environ. Sci., 2017, 10: 1207.http://xlink.rsc.org/?DOI=C7EE00421D

doi: 10.1039/C7EE00421D     URL    
[14]
Lee J , Chang H T , An T , Ahn S , Shim J , Kim J M. Nat. Commun., 2013, 4: 2461.https://www.ncbi.nlm.nih.gov/pubmed/24025981

doi: 10.1038/ncomms3461     URL     pmid: 24025981
[15]
Wen X , Wu J , Ye M , Gao D , Lin C . Chem.Commun., 2016, 52: 11355.
[16]
Seo J , Park S , Kim Y C , Jeon N J , Noh J H , Yoon S C , Sang S I. Energy Environ. Sci., 2014, 7: 2642.http://xlink.rsc.org/?DOI=C4EE01216J

doi: 10.1039/C4EE01216J     URL    
[17]
Heo J H , Han H J , Kim D , Ahn T K , Im S H. Energy Environ. Sci., 2015, 8: 1602.http://xlink.rsc.org/?DOI=C5EE00120J

doi: 10.1039/C5EE00120J     URL    
[18]
Kim J H , Williams S T , Cho N , Chueh C C , Jen A K Y. Adv. Energy Mater., 2015, 5: 1401229 http://doi.wiley.com/10.1002/aenm.201401229

doi: 10.1002/aenm.201401229     URL    
[19]
Cheng P , Zhan X. Chem. Soc. Rev. 2016, 45: 2544.https://www.ncbi.nlm.nih.gov/pubmed/26890341

doi: 10.1039/c5cs00593k     URL     pmid: 26890341
[20]
Saliba M , Matsui T , Domanski K , Seo J Y , Ummadisingu A , Zakeeruddin S M , Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206.https://www.ncbi.nlm.nih.gov/pubmed/27708053

doi: 10.1126/science.aah5557     URL     pmid: 27708053
[21]
Giordano F , Abate A , Correa-Baena J P, Saliba M, Matsui T, Im S H, Zakeeruddin S M, Nazeeruddin N K, Hagfeldt A, Grätzel M. Nat. Commun., 2016, 7: 10379.https://www.ncbi.nlm.nih.gov/pubmed/26758549

doi: 10.1038/ncomms10379     URL     pmid: 26758549
[22]
Zhou H , Chen Q , Li G , Luo S , Song T , Duan H S , Hong Z , You J , Liu Y , Yang Y . Science, 2014, 345: 542.https://www.ncbi.nlm.nih.gov/pubmed/25082698

URL     pmid: 25082698
[23]
Wang J T , Ball J M , Barea E M , Abate A , Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R[J]. Nano Lett., 2014, 14: 724.https://www.ncbi.nlm.nih.gov/pubmed/24341922

doi: 10.1021/nl403997a     URL     pmid: 24341922
[24]
You J , Meng L , Song T B , Guo T F , Yang Y M , Chang W H , Hong Z , Chen H , Zhou H , Q Chen, Liu Y, Marco N D, Yang Y. Nat. Nanotechnol., 2016, 11: 75.https://www.ncbi.nlm.nih.gov/pubmed/26457966

doi: 10.1038/nnano.2015.230     URL     pmid: 26457966
[25]
Yu Z , Sun L. Adv. Energy Mater., 2015, 5: 1500213.http://doi.wiley.com/10.1002/aenm.201500213

doi: 10.1002/aenm.201500213     URL    
[26]
Anaraki E H , Kermanpur A , Steier L , Domanski K , Matsui T , Tress W F , Saliba M , Abate A , Grätzel M , Hagfeldt A , Correa-Baena J P. Energy Environ. Sci., 2016, 9: 3128.http://xlink.rsc.org/?DOI=C6EE02390H

doi: 10.1039/C6EE02390H     URL    
[27]
Correa-Baena J P , Steier L , Tress W F , Saliba M , Neutzner S , Matsui T , Giordano F , Jacobsson T J , Srimath K A R , Zakeeruddin S M , Petrozza A , Abate A , Nazeeruddin M K , Grätzel M , Hagfeldt A . Energy Environ. Sci., 2015, 8: 2928.http://xlink.rsc.org/?DOI=C5EE02608C

doi: 10.1039/C5EE02608C     URL    
[28]
Wang C , Zhao D , Grice C R , Liao W , Yu Y , Cimaroli Y , Shrestha Y , Roland P J , Chen J , Yu Z , Liu P , Cheng N , Ellingson R J , Zhao X , Yan Y . J. Mater. Chem. A, 2016, 4: 12080.http://xlink.rsc.org/?DOI=C6TA04503K

doi: 10.1039/C6TA04503K     URL    
[29]
Jeon N J , Lee J , Noh J H , Nazeeruddin M K , Grätzel M , Seok S . Am. Chem. Soc., 2013, 135: 19087.https://pubs.acs.org/doi/10.1021/ja410659k

doi: 10.1021/ja410659k     URL    
[30]
Wang C , Zhao D , Grice C R , Liao W , Yu Y , Cimaroli A , Shrestha N , Roland P J , Chen J , Yu Z , Liu P , Cheng N , Ellingson R J , Zhao X , Yan Y. Adv. Energy Mater., 2015, 5: 1500038.http://doi.wiley.com/10.1002/aenm.201500038

doi: 10.1002/aenm.201500038     URL    
[31]
Ye T , Ma S , Jiang X , Wei L , Vijila C , Ramakrishna S. Adv. Funct. Mater., 2017, 27: 1606545.http://doi.wiley.com/10.1002/adfm.201606545

doi: 10.1002/adfm.201606545     URL    
[32]
Meng F , Gao L , Yan Y , Cao J , Wang N , Wang T , Ma T . Carbon, 2019, 145: 290.https://linkinghub.elsevier.com/retrieve/pii/S0008622319300478

doi: 10.1016/j.carbon.2019.01.047     URL    
[33]
Meng F , Liu A , Gao L , Cao J , Yan Y , Wang N , Fan M , Wei G , Ma T . J. Mater. Chem. A, 2019, 7: 8690.http://xlink.rsc.org/?DOI=C9TA01364D

doi: 10.1039/C9TA01364D     URL    
[34]
Dai X , Zhang Z , Jin Y , Niu Y , Cao H , Liang X , Chen L , Wang J , Peng X . Nature, 2014, 515: 96.https://www.ncbi.nlm.nih.gov/pubmed/25363773

doi: 10.1038/nature13829     URL     pmid: 25363773
[35]
Habisreutinger S N , Leijtens T , Eperon G E , Stranks S D , Nicholas R J , Snaith H J. Nano Lett., 2014, 14: 5561.https://www.ncbi.nlm.nih.gov/pubmed/25226226

doi: 10.1021/nl501982b     URL     pmid: 25226226
[36]
Wang Q , Dong Q , Li T , Gruverman A , Huang J . Adv.Mater., 2016, 28: 6734.
[37]
Bi D , Yi C , Luo J , Dcoppet J D , Zhang F , Zakeeruddin S M , Li X , Hagfeldt A , Grätzel M .Nat. Energy, 2016, 1: 16142.https://doi.org/10.1038/nenergy.2016.142

doi: 10.1038/nenergy.2016.142     URL    
[38]
Wang F , Endo M , Mouri S , Miyauchi Y , Ohno Y , Wakamiya A , Murata Y , Matsuda K . Nanoscale, 2016, 8: 11882.https://www.ncbi.nlm.nih.gov/pubmed/27232674

doi: 10.1039/c6nr01152g     URL     pmid: 27232674
[39]
Jiang P , Jones T W , Duffy N W , Anderson K F , Bennett R , Grigore M , Marvig P , Xiong Y , Liu T , Sheng Y , Hong L , Hou X , Duan M , Hu Y , Rong Y , Wilson G J , Han H . Carbon, 2018, 129: 830.https://linkinghub.elsevier.com/retrieve/pii/S0008622317308849

doi: 10.1016/j.carbon.2017.09.008     URL    
[40]
Liu Z , Sun B , Shi T , Tanga Z , Liao G .J. Mater. Chem. A, 2016, 4: 10700.http://xlink.rsc.org/?DOI=C6TA02851A

doi: 10.1039/C6TA02851A     URL    
[41]
Zhang N , Guo Y , Yin X , He M , Zou X . Mater.Lett., 2016, 182: 248.
[42]
Wei H , Xiao J , Yang Y , Lv S , Shi J , Xu X , Dong J , Luo Y , Li D , Meng Q . Carbon, 2015. 93: 861.https://linkinghub.elsevier.com/retrieve/pii/S000862231500439X

doi: 10.1016/j.carbon.2015.05.042     URL    
[43]
Zhang F , Shi W , Luo J , Pellet N , Yi C , Li X , Zhao X , Dennis T J S, Li X, Wang S, Xiao Y, Zakeeruddin S M, Bi D, Grätzel M. Adv. Mater., 2017, 29: 606806.
[44]
Zhang J , Hultqvist A , Zhang T , Jiang L , Ruan C , Yang L , Cheng Y , Edoff M , Johansson E M[J]. Chem. Sus. Chem., 2017, 10: 3810.http://doi.wiley.com/10.1002/cssc.v10.19

doi: 10.1002/cssc.v10.19     URL    
[45]
Koushik D , Verhees W J H, Kuang Y, Veenstra S, Zhang D, Verheijen M A, Creatoreab M, Schroppa R E I. Energy Environ. Sci., 2017, 10: 91.http://xlink.rsc.org/?DOI=C6EE02687G

doi: 10.1039/C6EE02687G     URL    
[46]
Wang F , Shimazaki A , Yang F , Kanahashi K , Matsuki K , Miyauchi Y , Takenobu T , Wakamiya A , Murata Y , Matsuda K .J. Phys. Chem. C, 2017, 121: 1562.https://pubs.acs.org/doi/10.1021/acs.jpcc.6b12137

doi: 10.1021/acs.jpcc.6b12137     URL    
[47]
Peng J , Wu Y , Ye W , Jacobs D A , Shen H , Fu X , Wan Y , Duong T , Wu N , Barugkin C , Nguyen H T , Zhong D , Li J , Lu T , Liu Y , Lockrey M N , Weber K J , Catchpolea K R , White T P. Energy Environ. Sci., 2017, 10: 1792.http://xlink.rsc.org/?DOI=C7EE01096F

doi: 10.1039/C7EE01096F     URL    
[48]
Peng J , Khan J I , Liu W , Ugur E , Duong T , Wu Y , Shen H , Wang K , Dang H , Aydin E , Yang X , Wan Y , Weber K J , Catchpole K R , Laquai F , Wolf S D , White T P. Adv. Energy Mater., 2018, 8: 1801208.http://doi.wiley.com/10.1002/aenm.v8.30

doi: 10.1002/aenm.v8.30     URL    
[49]
Zhang H , Shi J , Zhu L , Luo Y , Li D , Wu H , Meng Q . Nano Energy, 2018, 43: 383.https://linkinghub.elsevier.com/retrieve/pii/S2211285517307024

doi: 10.1016/j.nanoen.2017.11.024     URL    
[50]
Snaith H J , Abate A , Ball J M , Eperon G E , Leijtens T , Noel N K , Stranks S D , Wang J T , Wojciechowski K , Zhang W .[J]. Phys. Chem. Lett., 2014, 5: 1511.
[51]
Rajagopal A , Yao K , Jen A K Y. Adv. Mater., 2018, 30: 1800455.http://doi.wiley.com/10.1002/adma.201800455

doi: 10.1002/adma.201800455     URL    
[52]
Burschka J , Pellet N , Moon S J , Humphry-Baker R , Gao P , Nazeeruddin M K , Grätzel M . Nature, 2013, 499: 316.https://www.ncbi.nlm.nih.gov/pubmed/23842493

doi: 10.1038/nature12340     URL     pmid: 23842493
[53]
Jeon N J , Noh J H , Kim Y C , Yang W S , Ryu S , Seok S . Nat.Mater., 2014, 13: 897.
[54]
Ungera E L , Hokea E T , Bailiea C D , Nguyenc W H , Bowringa A R , Heumüllera T , Christoforod M G , McGehee M D. Energy Environ. Sci., 2014, 7: 3690.http://xlink.rsc.org/?DOI=C4EE02465F

doi: 10.1039/C4EE02465F     URL    
[55]
Kim H S , Mora-Sero I , Gonzalez-Pedro V , Fabregat-Santiago F , Juarez-Perez E J, Park N G, Bisquert[J]. Nat. Commun., 2013, 4: 2242.https://www.ncbi.nlm.nih.gov/pubmed/23900067

URL     pmid: 23900067
[56]
Hou Y , Chen W , Baran D , Stubhan T , Luechinger N A , Hartmeier B , Richter M , Min J , Chen S , Quiroz C O , Li N , Zhang H , Heumueller T , Matt G J , Osvet A , Forberich K , Zhang Z G , Li Y , Winter B , Schweizer P , Spiecker E , Brabec C .[J]. Adv. Mater., 2016, 28: 5112.https://www.ncbi.nlm.nih.gov/pubmed/27144875

doi: 10.1002/adma.201504168     URL     pmid: 27144875
[57]
Tress W , Marinova N , Inganäs O , Nazeeruddin M K , Zakeeruddin S M , Grätzel M. Adv. Energy. Mater., 2015, 5: 1400812.http://doi.wiley.com/10.1002/aenm.201400812

doi: 10.1002/aenm.201400812     URL    
[58]
Heo J H , Im S H , Noh J H , Mandal T N , Lim C S , Chang J A , Lee Y H , Kim H J , Sarkar A , Nazeeruddin M K , Grätzel M , Seok S .Nat. Photonics, 2013, 7: 486.https://doi.org/10.1038/nphoton.2013.80

doi: 10.1038/nphoton.2013.80     URL    
[59]
Im J H , Jang I H , Pellet N , Grätzel M , Park N G. Nat. Nanotechnol., 2014, 9: 927.https://www.ncbi.nlm.nih.gov/pubmed/25173829

doi: 10.1038/nnano.2014.181     URL     pmid: 25173829
[60]
Ahn N , Son D Y , Jang I H , Kang S M , Choi M , Park N G .J. Mater. Chem. A, 2015, 137: 8696.
[61]
Zhang H , Xiao J , Shi J , Su H , Luo Y , Li D , Wu H , Cheng Y , Meng Q. Adv. Funct. Mater., 2018, 28: 1802985.http://doi.wiley.com/10.1002/adfm.v28.39

doi: 10.1002/adfm.v28.39     URL    
[62]
Wu Z , Liu Z , Hu Z , Hawash Z , Qiu L , Jiang Y , Ono L K , Qi Y . Adv.Mater., 2019, 31: 1804284.
[63]
Yuan S , Wang J , Yang K , Wang P , Zhang X , Zhan Y , Zheng L . Nanoscale, 2018, 10: 18909.https://www.ncbi.nlm.nih.gov/pubmed/30283942

URL     pmid: 30283942
[64]
Wang P , Wang J , Zhang X , Wang H , Cui X , Yuan S , Lua H , Tua L , Zhan Y , Zheng L .J. Mater. Chem. A, 2018, 6: 15853.http://xlink.rsc.org/?DOI=C8TA05593A

doi: 10.1039/C8TA05593A     URL    
[65]
Wang Z , Kamarudin M A , Huey N C , Yang F , Pandey M , Kapil G , Ma T , Hayase S . ChemSusChem, 2018, 11: 3941.https://www.ncbi.nlm.nih.gov/pubmed/30225914

doi: 10.1002/cssc.201801888     URL     pmid: 30225914
[66]
Huang P , Chen Q , Zhang K , Yuan L , Zhou Y , Song B , Li Y .J. Mater. Chem. A, 2019, 7: 6213.http://xlink.rsc.org/?DOI=C8TA11841H

doi: 10.1039/C8TA11841H     URL    
[67]
Yang G , Wang C , Lei H , Zheng X , Qin P , Xiong L , Zhao X , Yan Y , Fang G .J. Mater. Chem. A, 2017, 5: 1658.http://xlink.rsc.org/?DOI=C6TA08783C

doi: 10.1039/C6TA08783C     URL    
[68]
Hou M , Zhang H , Wang Z , Xia Y , Chen Y , Huang W. ACS Appl .Mater. Interfaces, 2018, 10: 30607.https://pubs.acs.org/doi/10.1021/acsami.8b10332

doi: 10.1021/acsami.8b10332     URL    
[69]
Liu C , Cai M , Yang Y , Arain Z , Ding Y , Shi X , Shi P , Ma S , Hayat T , Alsaedi A , Wu J , Dai S , Cao G .J. Mater. Chem. A, 2019, 7: 11086.http://xlink.rsc.org/?DOI=C9TA02094B

doi: 10.1039/C9TA02094B     URL    
[70]
Seo S , Jeon I , Xiang R , Lee C , Zhang H , Tanaka T , Lee J W , Suh D , Ogamoto T , Nishikubo R , Saeki A , Chiashi S , Shiomi J , Kataura H , Lee H M , Yang Y , Matsuo Y , Maruyama S .J. Mater. Chem. A, 2019, 7: 12987.http://xlink.rsc.org/?DOI=C9TA02629K

doi: 10.1039/C9TA02629K     URL    
[71]
Xue Q , Bai Y , Liu M , Xia R , Hu Z , Chen Z , Jiang X , Huang F , Yang S , Matsuo Y , Yip H , Cao Y. Adv. Energy Mater., 2017, 7: 1602333.http://doi.wiley.com/10.1002/aenm.201602333

doi: 10.1002/aenm.201602333     URL    
[72]
Cao J , Liu Y , Jing X , Yin J , Li J , Xu B , Tan Y , Zheng N .[J]. Am. Chem. Soc., 2015, 137: 10914.https://pubs.acs.org/doi/10.1021/jacs.5b06493

doi: 10.1021/jacs.5b06493     URL    
[73]
Wen X , Wu J , Gao D , Lin C .J. Mater. Chem A, 2016, 4: 13482.http://xlink.rsc.org/?DOI=C6TA04616A

doi: 10.1039/C6TA04616A     URL    
[74]
Xiao J , Shi J , Liu H , Xu Y , Lv S , Luo Y , Li D , Meng Q , Li Y. Adv. Energy Mater., 2015, 5: 1401943.http://doi.wiley.com/10.1002/aenm.201401943

doi: 10.1002/aenm.201401943     URL    
[75]
Li H , Zhang R , Li Y , Li Y , Liu H , Shi J , Zhang H , Wu H , Luo Y , Li D , Li Y , Meng Q. Adv. Energy Mater., 2018, 8, 1802012.http://doi.wiley.com/10.1002/aenm.v8.30

doi: 10.1002/aenm.v8.30     URL    
[76]
Zhang X , Wang Q , Jin Z , Chen Y , Liu H , Wang J , Li Y , Liu S . Adv. Mater. Interfaces, 2018, 5: 1701117.http://doi.wiley.com/10.1002/admi.201701117

doi: 10.1002/admi.201701117     URL    
[77]
Li H , Shi W , Huang W , Yao E , Han J , Chen Z , Liu S , Shen Y , Wang M , Yang Y . NanoLett., 2017, 17: 2328.https://pubs.acs.org/doi/10.1021/acs.nanolett.6b05177

doi: 10.1021/acs.nanolett.6b05177     URL    
[78]
Ardakani, Gholipour S , Marinova N, Delgado J L, Turren-Cruz S H, Domanski K, Taghavinia N, Saliba M, Grätzel M, Hagfeldt A, Tress W G. Adv. Energy Mater., 2018, 8: 1702719.http://doi.wiley.com/10.1002/aenm.v8.12

doi: 10.1002/aenm.v8.12     URL    
[79]
Liu Z , Lau S P , Yan F . Chem. Soc. Rev, 2015, 44: 5638.https://www.ncbi.nlm.nih.gov/pubmed/26024242

doi: 10.1039/c4cs00455h     URL     pmid: 26024242
[80]
Lee J K , Kim H S , Park N G. Acc. Chem. Res, 2016, 49: 311.https://www.ncbi.nlm.nih.gov/pubmed/26797391

doi: 10.1021/acs.accounts.5b00440     URL     pmid: 26797391
[81]
Jain S M , Qiu Z , Häggman Z , Mirmohades M , Johansson M B , Edvinsson T , Boschloo G. .Energy Environ. Sci., 2016, 9: 3770.http://xlink.rsc.org/?DOI=C6EE02544G

doi: 10.1039/C6EE02544G     URL    
[82]
Noel N K , Abate A , Stranks S D , Parrott E S , Burlakov V M , Goriely A , Snaith H J . ACS Nano, 2014, 8: 9815.https://www.ncbi.nlm.nih.gov/pubmed/25171692

URL     pmid: 25171692
[83]
Abate A , Saliba M , Hollman D J , Stranks S D , Wojciechowski K , Avolio R , Grancini G , Petrozza A , Snaith H J. Nano Lett., 2014, 14: 3247.https://www.ncbi.nlm.nih.gov/pubmed/24787646

URL     pmid: 24787646
[84]
Zhu H , Huang B , Wu S , Xiong Z , Li J , Chen W . J. Mater. Chem. A, 2018, 6: 6255.http://xlink.rsc.org/?DOI=C8TA00267C

doi: 10.1039/C8TA00267C     URL    
[85]
Lian X , Chen J , Zhang Y , Tian S , Qin M , Li J , Andersen T R , Wu G , Lu X , Chen H .J. Mater. Chem. A, 2019, 7: 18980.http://xlink.rsc.org/?DOI=C9TA04658E

doi: 10.1039/C9TA04658E     URL    
[86]
Wang Y , Zhang T , Kan M , Li Y , Wang T , Zhao Y . Joule, 2018, 2: 2065.https://linkinghub.elsevier.com/retrieve/pii/S2542435118302782

doi: 10.1016/j.joule.2018.06.013     URL    
[87]
Zhao S , Xie J , Cheng G , Xiang Y , Zhu H , Guo W , Wang H , Qin M , Lu X , Qu J , Wang J , Xu J , Yan K . Small, 2018, 14: 1803350.https://onlinelibrary.wiley.com/toc/16136829/14/50

doi: 10.1002/smll.v14.50     URL    
[88]
Wang Y , Zhang T , Kan M , Zhao Y .[J]. Am. Chem. Soc., 2018, 140: 12345.https://pubs.acs.org/doi/10.1021/jacs.8b07927

doi: 10.1021/jacs.8b07927     URL    
[89]
Zhuang J , Wei Y , Luan Y , Chen N , Mao P , Cao S , Wang J . Nanoscale, 2019, 11: 14553.https://www.ncbi.nlm.nih.gov/pubmed/31342051

doi: 10.1039/c9nr03638e     URL     pmid: 31342051
[90]
Huang C , Lin P , Fu N , Liu C , Xu B , Sun K , Wang D , Zenga X , Ke S . Chem.Commun, 2019, 55: 2777.
[91]
Wang S , Zhu Y , Wang C , Ma Z .J. Mater. Chem. A, 2019, 7: 11867.http://xlink.rsc.org/?DOI=C9TA02631B

doi: 10.1039/C9TA02631B     URL    
[92]
Shen D , Pang A , Li Y , Dou J , Wei M . Chem.Commun., 2018, 54: 1253.
[93]
Fang R , Wu S , Chen W , Liu Z , Zhang S , Chen R , Yue Y , Deng L , Cheng Y , Han L , Chen W . ACS Nano, 2018, 12: 2403.https://www.ncbi.nlm.nih.gov/pubmed/29481056

URL     pmid: 29481056
[94]
Dou Y , Wang, Li, Liao Y, Sun W, Wu J, Lan Z. ACS Appl. Mater. Interfaces, 2019, 11: 32159.https://www.ncbi.nlm.nih.gov/pubmed/31403271

URL     pmid: 31403271
[95]
Shin D , Kang D , Lee J B , Ahn J H , Cho I W , Ryu M Y , Cho S W , Jung N E , Lee H , Yi Y. ACS Appl. Mater. Interfaces., 2019, 11: 17028.https://www.ncbi.nlm.nih.gov/pubmed/30990013

URL     pmid: 30990013
[96]
Yang I S , Lee S , Choi J , Jung M T , Kim J , Lee W I .J. Mater. Chem. A, 2019, 7: 6028.http://xlink.rsc.org/?DOI=C8TA12217B

doi: 10.1039/C8TA12217B     URL    
[97]
Subhani S W , Wang K , Du M , Wang X , Liu S. Adv. Energy Mater., 2019, 9: 1803785.https://onlinelibrary.wiley.com/toc/16146840/9/21

doi: 10.1002/aenm.v9.21     URL    
[98]
Liu Z , Li S , Wang X , Cui Y , Qin Y , Leng S , Xu Y , Yao K , Huang H . Nano Energy, 2019, 62: 734.https://linkinghub.elsevier.com/retrieve/pii/S2211285519304781

doi: 10.1016/j.nanoen.2019.05.072     URL    
[99]
Zhao Z , You S , Huang J , Yuan L , Xiao Z , Cao Y , Cheng N , Hu L , Liua J , Yu B .J. Mater. Chem. C, 2019, 7: 9735.http://xlink.rsc.org/?DOI=C9TC03259B

doi: 10.1039/C9TC03259B     URL    
[100]
Zou M , Xia X , Jiang Y , Peng J , Jia Z , Wang X , Li F . ACS Appl. Mater. Interfaces, 2019, 11: 33515.https://www.ncbi.nlm.nih.gov/pubmed/31423760

doi: 10.1021/acsami.9b12961     URL     pmid: 31423760
[1] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[2] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[3] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[4] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[5] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[6] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[7] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[8] 李东, 李文海, 董桂芳, 段炼, 王立铎. 有机光敏二极管的功能材料探索及其器件结构[J]. 化学进展, 2014, 26(12): 1889-1898.