English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1889-1898 DOI: 10.7536/PC140727 前一篇   后一篇

• 综述与评论 •

有机光敏二极管的功能材料探索及其器件结构

李东, 李文海, 董桂芳*, 段炼, 王立铎   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 董桂芳 E-mail:donggf@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 61177023, 51173096和61474069)资助

The Functional Materials and Structure of Organic Photodiodes

Li Dong, Li Wenhai, Dong Guifang*, Duan Lian, Wang Liduo   

  1. Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 61177023, 51173096 and 61474069)

有机光敏二极管具有功能材料种类丰富、光敏波长可调控、成本低和可在柔性基底上制备等优点,在图像传感、免疫探测、光学通信等方面有着重要的应用前景.本文对近年来引起广泛关注的一些有机光敏二极管材料进行了归纳,探讨了它们在对不同波长敏感的光敏器件中的特性,总结了有机光敏二极管的结构优化、界面修饰和界面传输机理及其内部光强分布的相关研究,并介绍了一些基于有机光敏二极管的光电功能器件实际应用.最后,对有机光敏二极管未来的发展方向和应用前景进行了展望.

Organic photodiodes (OPDs) have attracted great attention for potential applications in organic optocouplers, image sensors, immune detection and optical communication, due to their advantages of low cost, plenty of functional materials, tunable absorption wavelengths and compatibility with flexible substrates. This article presents an overview of organic photosensitive materials widely used in OPDs, with response spectra regioning from UV to near infra-red. Researches on structure optimization, interface modification, carriers transmission mechanism and internal optical distribution of OPDs are summarized. Some practical applications of the OPDs in optoelectronic fields are also introduced. Finally, an outlook on future development of OPDs is briefly brought up.

Contents
1 Introduction
2 The progress of materials on organic photodiodes
2.1 The materials used in organic photodiodes for visible light
2.2 The materials used in organic photodiodes for UV light
2.3 The materials used in organic photodiodes for near infra-red light
3 The structural optimization and interface modification for the organic photodiodes
3.1 The organic photodiodes with planar heterojunction structure
3.2 The organic photodiodes with bulk heterojunction structure
3.3 The organic photodiodes with other structure
3.4 The research of interface mechanism in organic photodiodes
3.5 The calculation of optical distribution in organic photodiodes
3.6 The stability of organic photodiodes
4 Outlook on future development of organic photodiodes

中图分类号: 

()

[1] Bateman J E. Nucl. Instrum. Methods, 1969, 71: 269.
[2] Ng T N, Wong W S, Chabinyc M L, Sambandan S, Street R A. Appl. Phys. Lett., 2008, 92: 213303.
[3] Li D, Liu X, Dong G, Duan L, Zhang D, Zhao H, Wang L, Qiu Y. Laser & Photonics Reviews, 2014, 8: 316.
[4] Arias A C, MacKenzie J D, McCulloch I, Rivnay J, Salleo A. Chem. Rev., 2010, 110: 3.
[5] Wang X H, Amatatongchai M, Nacapricha D, Hofmann O, de Mello J C, Bradley D D C, de Mello A J. Sensors and Actuators B-Chemical, 2009, 140: 643.
[6] Lee J, Jadhav P, Baldo M. Appl. Phys. Lett., 2009, 95: 033301.
[7] Tedde S F, Kern J, Sterzl T, FüRst J, Lugli P, Hayden O. Nano Lett., 2009, 9: 980.
[8] Hamasaki T, Morimune T, Kajii H, Minakata S, Tsuruoka R, Nagamachi T, Ohmori Y. Thin Solid Films, 2009, 518: 548.
[9] Lee K H, Leem D S, Sul S, Park K B, Lim S J, Han H, Kim K S, Jin Y W, Lee S, Park S Y. Journal of Materials Chemistry C, 2013, 1: 2666.
[10] Dong G F, Zheng H Y, Duan L, Wang L D, Qiu Y. Adv. Mater., 2009, 21: 2501.
[11] Jansen-Van Vuuren R D, Pivrikas A, Pandey A K, Burn P L. Journal of Materials Chemistry C, 2013, 1: 3532.
[12] Lee K H, Leem D S, Castrucci J S, Park K B, Bulliard X, Kim K S, Jin Y W, Lee S, Bender T P, Park S Y. ACS Applied Materials & Interfaces, 2013, 5: 13089.
[13] Higashi Y, Kim K S, Jeon H G, Ichikawa M. J. Appl. Phys., 2010, 108: 034502.
[14] Liu C, Liu L, Che G, Cui Y, Wang Q, Li W, Liu M. Sol. Energy Mater. Sol. Cells, 2012, 96: 29.
[15] Liu C B, Liu M, Che G B, Su B, Wang L, Zhang X X, Zhang S. Solid-State Electronics, 2013, 89: 68.
[16] Dai Q, Zhang X. Opt. Express, 2010, 18: 11821.
[17] Fang Y, Guo F, Xiao Z, Huang J. Advanced Optical Materials, 2014, 2: 348.
[18] Wu S H, Li W L, Chu B, Lee C, Su Z S, Wang J B, Yan F, Zhang G, Hu Z Z, Zhang Z Q. Appl. Phys. Lett., 2010, 96: 093302.
[19] Li H G, Wu G, Chen H Z, Wang M. Org. Electron., 2011, 12: 70.
[20] Chen F C, Chien S C, Cious G L. Appl. Phys. Lett., 2010, 97: 103301.
[21] Binda M, Iacchetti A, Natali D, Beverina L, Sassi M, Sampietro M. Appl. Phys. Lett., 2011, 98: 073303.
[22] Dalgleish S, Matsushita M M, Hu L, Li B, Yoshikawa H, Awaga K. J. Am. Chem. Soc., 2012, 134: 12742.
[23] Hu X, Dong Y, Huang F, Gong X, Cao Y. The Journal of Physical Chemistry C, 2013, 117: 6537.
[24] Li L, Huang Y, Peng J, Cao Y, Peng X. Journal of Materials Chemistry C, 2014, 2: 1372.
[25] Yang T, Sun K, Liu X, Wei W, Yu T, Gong X, Wang D, Cao Y. The Journal of Physical Chemistry C, 2012, 116: 13650.
[26] Verilhac J. In Recent Developments of Solution-Processed Organic Photodetectors, Semiconductor Conference Dresden-Grenoble (ISCDG), 2012 International, IEEE. 2012. 101.
[27] Yan F, Liu H, Li W, Chu B, Su Z, Zhang G, Chen Y, Zhu J, Yang D, Wang J. Appl. Phys. Lett., 2009, 95: 253308.
[28] Guo F, Xiao Z, Huang J. Advanced Optical Materials, 2013, 1: 289.
[29] Liu X L, Wang H X, Yang T B, Zhang W, Gong X. Appl. Mater. Inter., 2012, 4: 3701.
[30] Leem D S, Lee K H, Park K B, Lim S J, Kim K S, Jin Y W, Lee S. Appl. Phys. Lett., 2013, 103: 043305.
[31] Saracco E, Bouthinon B, Verilhac J M, Celle C, Chevalier N, Mariolle D, Dhez O, Simonato J P. Adv. Mater., 2013, 25: 6534.
[32] Yang D, Zhou X, Ma D. Org. Electron., 2013, 14: 3019.
[33] Yang D, Ma D. Journal of Materials Chemistry C, 2013, 1: 2054.
[34] Xie Y, Wei L, Li Q, Wei G, Wang D, Chen Y, Jiao J, Yan S, Liu G, Mei L. Appl. Phys. Lett., 2013, 103: 261109.
[35] Game O, Singh U, Kumari T, Banpurkar A, Ogale S. Nanoscale, 2014, 6: 503.
[36] Arca F, Tedde S F, Sramek M, Rauh J, Lugli P, Hayden O. Scientific Reports, 2013, 3: 1324.
[37] Wang Q, Aziz H. Org. Electron., 2013, 14: 3030.
[38] Sun Q, Dong G, Li D, Duan L, Wang L, Qiu Y. Org. Electron., 2012, 13: 3276.
[39] Peumans P, Yakimov A, Forrest S R. J. Appl. Phys., 2003, 93: 3693.
[40] O'connor B, An K H, Pipe K P, Zhao Y, Shtein M. Appl. Phys. Lett., 2006, 89: 233502.
[41] Chen F C, Wu J L, Hung Y. Appl. Phys. Lett., 2010, 96: 193304.
[42] Li W H, Li D, Dong G F, Duan L, Wang L D. Org. Electron., 2014,15:3231.

[1] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[2] 梅以成, 杨宝卫. 酰胺电子等排体在先导化合物优化中的应用[J]. 化学进展, 2016, 28(9): 1406-1416.
[3] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
阅读次数
全文


摘要