English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1170-1185 DOI: 10.7536/PC160336 前一篇   后一篇

• 综述与评论 •

溶液法制备有机太阳电池阳极界面修饰层MoO3

李炎平1,2, 於黄忠1*, 董一帆2, 黄欣欣2   

  1. 1. 华南理工大学物理与光电学院 广州 510640;
    2. 华南理工大学材料科学与工程学院 广州 510640
  • 收稿日期:2016-03-01 修回日期:2016-05-01 出版日期:2016-08-15 发布日期:2016-07-12
  • 通讯作者: 於黄忠 E-mail:hzhyu@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61176061,61474046,11247253)资助

Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3

Li Yanping1,2, Yu Huangzhong1*, Dong Yifan2, Huang Xinxin2   

  1. 1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China;
    2. School of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2016-03-01 Revised:2016-05-01 Online:2016-08-15 Published:2016-07-12
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61176061, 61474046, 11247253
在全溶液低温制备高效、稳定有机光伏器件过程中,合理选择制备器件界面修饰材料的方法至关重要,它已成为近期有机光伏领域的重点研究内容之一。合理的界面材料能降低界面的势垒高度,减少器件的串联电阻。溶液法制备三氧化钼(MoO3)阳极界面缓冲层能有效地改善有机太阳电池阳极界面收集和载流子传输的效率,从而提高太阳电池能量转换效率,同时也提高太阳电池的稳定性。本文综述了近年来溶液法制备有机太阳电池阳极界面修饰层MoO3的研究进展,介绍了阳极界面修饰层MoO3的各种制备方法与原理,阐述了基于溶液法制备界面修饰层MoO3薄膜的研究现状与存在问题,以期为全溶液法制备高效稳定有机太阳电池的研究提供有价值的参考。
For the whole solution-processed efficient and stable organic photovoltaic devices at low temperature, reasonably selecting the method of interface modification material preparation is very crucial. It has become one of the most focuses in research community of organic photovoltaics in recent years. By choosing suitable interfacial materials, the energetic barrier height at the interface could be reduced to form an ohmic contact with less series resistance, inducing high charge collection efficiency of the corresponding electrodes for holes or electrons. Solution-prepared molybdenum oxide (MoO3) as anode buffer layer can effectively improve the efficiency of interface collection and carrier transmission, improving the energy conversion efficiency and stability of organic solar cells. This article reviews the research progress of anode buffer layer MoO3 of organic solar cells in recent years, introduces the some preparation methods and principles of MoO3 as anode interface layers, elaborated the current situation and existing problems of MoO3 film based on the prepared solution of interfacial modification, which provides valuable references for the fabrication of the efficient and stable organic solar cells. We believe that solution-processed MoO3 will play a key role as buffer layers in the future fabrication of large area and flexible organic photovoltaic devices with high performance and long term stability.

Contents
1 Introduction
2 The effect of solution-prepared of MoO3 anode interface modification
3 The energy level structure and change of MoO3
4 The application of solution-prepared MoO3 in organic solar cell
4.1 MoO3 based on the preparation of ammonium molybdate
4.2 MoO3 based on organic molybdenum sources
4.3 MoO3 prepared by chemical synthesis
4.4 MoO3 prepared by nanoparticle dispersion method
4.5 MoO3 prepared by other solutions
5 Conclusion

中图分类号: 

()
[1] Jeon N J,Noh J H,Yang W S,Kim Y C,Ryu S,Seo J,Seok S I.Nature,2015,517:476.
[2] Major J D,Treharne R E,Phillips L J,Durose K.Nature,2014,511:334.
[3] Lizin S,Van P S,Schepper D E,Vranken L.Sol.Energy Mater.Sol.Cells,2012,103:1.
[4] Liu X D,Yu H,Yan L,Dong Q Q,Wan Q,Zhou Y,Song B,Li Y F.ACS Appl.Mater.Interf.,2015,7:6230.
[5] Lin Y Z,Wang J Y,Zhang Z G,Bai H T,Li Y F,Zhu D B,Zhan X W.Adv.Mater.,2015,27:1170.
[6] Heeger A J.Adv.Mater.,2014,26:10.
[7] Yu H Z,Ge Y C,Shi S W.Electrochim.Acta,2015,180:645.
[8] He Z C,Liu F,Wang C,Chen J H,He L L,Nordlund D,Wu H B,Russell T P,Cao Y.Mater.Horizons,2015,2:592.
[9] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[10] Lee S,Lee E S,Kim T Y,Cho J S,Eo Y J,Yun J H,Cho A.Sol.Energy Mater.Sol.Cells,2015,141:299.
[11] Bailie C D,Christoforo M G,Mailoa J P,Bowring A R,Unger E L,Nguyen W H,Burschka J,Pellet N,Lee J Z,Gratzel M.Energ.Environ.Sci.,2015,8:956.
[12] Constantinou I,Lai T H,Zhao D,Klump E D,Deininger J J,Lo C K,Reynolds J R.ACS Appl.Mater.Interf.,2015,7:4826.
[13] Andersen T R,Dam H F,Hosel M,Helgesen M,Carle J E,Larsen-Olsen T T,Gevorgyan S A,Andreasen J W,Adams J,Li N.Energ.Environ.Sci.,2014,7:2925.
[14] Yu H Z,Peng J B.Org.Electron.,2008,9:1022.
[15] He M,Wang M,Lin C,Lin Z.Nanoscale,2014,6:3984.
[16] Chen C P,Chen Y D,Chuang S C.Adv.Mater.,2011,23:3859.
[17] Li G,Zhu R,Yang Y.Nat.Photonics,2012,6:153.
[18] Krebs F C,Tromholt T,Jorgensen M.Nanoscale,2010,2:873.
[19] Antoniadis H,Hsieh B R,Abkowitz M A,Jenekhe S A,Stolka M.Synth.Met.,1994,62:265.
[20] Tang C W.App.Phys.Lett.,1986,48:183.
[21] Yu G,Gao J,Hummelen J C,Wudl F,Heeger A J.Sci.,1995,270:1789.
[22] Chen J D,Cui C H,Li Y Q,Zhou L,Ou Q D,Li C,Li Y F,Tang J X.Adv.Mater.,2015,27:1035.
[23] You J,Dou L,Yoshimura K,Kato T,Ohya K,Moriarty T,Emery K,Chen C C,Gao J,Li G,Yang Y.Nat.Commun.,2013,4:1446.
[24] Liu C,Yi C,Wang K,Yang Y L,Bhatta R S,Tsige M,Xiao S Y,Gong X.ACS Appl.Mater.Interf.,2015,7:4928.
[25] Gao K,Li L S,Lai T Q,Xiao L G,Huang Y,Huang F,Peng J B,Cao Y,Liu F,Russell T P,Janssen R A J,Peng X B.J.Am.Chem.Soc.,2015,137:7282.
[26] Lin Y Z,Wang J Y,Dai S X,Li Y F,Zhu D B,Zhan X W.Adv.Energy Mater.,2014,4:1400420.
[27] Brabec C J,Cravino A,Meissner D,Sariciftci N S,Fromherz T,Rispens M T,Sanchez L,Hummelen J C.Adv.Funct.Mater.,2001,11:374.
[28] Zhao X Y,Wang X Z,Lim S L,Qi D C,Wang R,Gao Z Q,Mi B X,Chen Z K,Huang W,Deng W.Sol.Energy Mater.Sol.Cells,2014,121:119.
[29] Cowan S R,Roy A,Heeger A J.Phys.Rev.B,2010,82:245202.
[30] Yang B B,Zhang D D,Lee S T,Li Y Q,Tang J X.App.Phys.Lett.,2013,102:073301.
[31] Dongaonkar S,Servaites J D,Ford G M,Loser S,Moore J,Gelfand R M,Mohseni H,Hillhouse H W,Agrawal R,Ratner M A,Marks T J,Lundstrom M S,Alam M A.J.App.Phys.,2010,108:124509.
[32] Huber R C,Ferreira A S,Thompson R,Kilbride D,Knutson N S,Devi L S,Toso D B,Challa J R,Zhou Z H,Rubin Y.Sci.,2015,348:1340.
[33] Graetzel M,Janssen R A J,Mitzi D B,Sargent E H.Nature,2012,488:304.
[34] Jackson N E,Savoie B M,Kohlstedt K L,Marks T J,Chen L X,Ratner M A.Macromolecules,2014,47:987.
[35] Lin H,Chen S S,Li Z K,Lai J Y L,Yang G F,Mcafee T,Jiang K,Li Y K,Liu Y H,Hu H W,Zhao J B,Ma W,Ade H,Yan H.Adv.Mater.,2015,27:7299.
[36] He Z C,Zhong C M,Su S J,Xu M,Wu H B,Cao Y.Nat.Photonics,2012,6:593.
[37] Chueh C C,Li C Z,Jen A K Y.Energy Environ.Sci.,2015,8:1160.
[38] Gautam B R,Lee C,Younts R,Lee W,Danilov E,Kim B J,Gundogdu K.ACS Appl.Mater.Interf.,2015,7:27586
[39] Huo L J,Liu T,Fan B B,Zhao Z Y,Sun X B,Wei D H,Yu M M,Liu Y Q,Sun Y M.Adv.Mater.,2015,27:6969.
[40] Zhao Z Q,Chen X,Liu Q,Wu Q L,Zhu J,Dai S Y,Yang S F.Org.Electron.,2015,27:232.
[41] Wang F Z,Tan Z A,Li Y F.Energy Environ.Sci.,2015,8:1059.
[42] Po R,Carbonera C,Bernardi A,Camaioni N.Energy Environ.Sci.,2011,4:285.
[43] Zou J Y,Li C Z,Chang C Y,Yip H L,Jen A K Y.Adv.Mater.,2014,26:3618.
[44] Wu F,Ye F,Chen Z B,Cui Y,Yang D L,Li Z D,Zhao X L,Yang X N.Org.Electron.,2015,26:48.
[45] Duan C,Zhang K,Zhong C,Huang F,Cao Y.Chem.Soc.Rev.,2013,42:9071.
[46] Lai Y Y,Cheng Y J,Hsu C S.Energy Environ.Sci.,2014,7:1866.
[47] Qian M,Zhang R,Hao J Y,Zhang W J,Zhang Q,Wang J P,Tao Y T,Chen S F,Fang J F,Huang W.Adv.Mater.,2015,27:3546.
[48] Zuo L J,Zhang S H,Li H Y,Chen H Z.Adv.Mater.,2015,27:6983
[49] Zhang Q,Zhang D W,Li X D,Liu X H,Zhang W J,Han L,Fang J F.Chem.Commun.,2015,51:10182.
[50] Zhao G,Wang W,Bae T S,Lee S G,Mun C,Lee S,Yu H S,Lee G H,Song M,Yun J.Nat.Commun.,2015,6:8830.
[51] Wei H Y,Xiao J Y,Yang Y Y,Lv S T,Shi J J,Xu X,Dong J,Luo Y H,Li D M,Meng Q B.Carbon,2015,93:861.
[52] Heriot S Y,Jones R A L.Nat.Mater.,2005,4:782.
[53] Min J,Luponosov Y N,Gasparini N,Richter M,Bakirov A V,Shcherbina M A,Chvalun S N,Grodd L,Grigorian S,Ameri T.Adv.Energy Mater.,2015,5:1500386.
[54] Ta Y L,Yang Z G.Langmuir,2015,31:13264.
[55] Kim H M,Kim J,Lee J,Jang J.ACS Appl.Mater.Interf.,2015,7:24592.
[56] Sun K,Li P C,Xia Y J,Chang J J,Ouyang J Y.ACS Appl.Mater.Interf.,2015,7:15314.
[57] Kim N,Kee S,Lee S H,Lee B H,Kahng Y H,Jo Y R,Kim B J,Lee K.Adv.Mater.,2014,26:2268.
[58] Lee J J,Lee S H,Kim F S,Choi H H,Kim J H.Org.Electron.,2015,26:191.
[59] Sun Y M,Seo J H,Takacs C J,Seifter J,Heeger A J.Adv.Mater.,2011,23:1679.
[60] Park J H,Seo J,Park S,Shin S S,Kim Y C,Jeon N J,Shin H W,Ahn T K,Noh J H,Yoon S C,Hwang C S,Seok S I.Adv.Mater.,2015,27:4013.
[61] Zhao D W,Tan S T,Ke L,Liu P,Kyaw A K K,Sun X W,Lo G Q,Kwong D L.Sol.Energy Mater.Sol.Cells,2010,94:985.
[62] Shen K,Yang R L,Wang D Z,Jeng M J,Chaudhary S,Ho K M,Wang D L.Sol.Energy Mater.Sol.Cells,2016,144:500.
[63] Tan Z A,Zhang W Q,Cui C H,Ding Y Q,Qian D P,Xu Q,Li L J,Li S S,Li Y F.Phys.Chem.Chem.Phys.,2012,14:14589.
[64] Li W Z,Jin G H,Hu H S,Li J,Yang Y H,Chen Q Y.Electrochim.Acta,2015,153:499.
[65] Tan Z A,Li L G,Cui C H,Ding Y Q,Xu Q,Li S S,Qian D P,Li Y F.J.Phys.Chem.C,2012,116:18626.
[66] Tan Z A,Li L J,Wang F Z,Xu Q,Li S S,Sun G,Tu X H,Hou X L,Hou J H,Li Y F.Adv.Energy Mater.,2014,4:1300884.
[67] Tu X H,Wang F Z,Li C,Tan Z A,Li Y F.J.Phys.Chem.C,2014,118:9309.
[68] Irfan,Ding H J,Gao Y L,Small C,Kim D Y,Subbiah J,So F.App.Phys.Lett.,2010,96:243307.
[69] Brezesinski T,Wang J,Tolbert S H,Dunn B.Nat.Mater.,2010,9:146.
[70] Cao X H,Zheng B,Shi W H,Yang J,Fan Z X,Luo Z M,Rui X H,Chen B,Yan Q Y,Zhang H.Adv.Mater.,2015,27:4695.
[71] Kim H J,Seo K W,Noh Y J,Na S I,Sohn A,Kim D W,Kim H K.Sol.Energy Mater.Sol.Cells,2015,141:194.
[72] Park E K,Kim J H,Kim J H,Park M H,Lee D H,Kim Y S.Thin Solid Films,2015,587:137.
[73] Hammond S R,Meyer J,Widjonarko N E,Ndione P F,Sigdel A K,Garcia A,Miedaner A,Lloyd M T,Kahn A,Ginley D S,Berry J J,Olson D C.J.Mater.Chem.,2012,22:3249.
[74] Kim D Y,Han Y C,Kim H C,Jeong E G,Choi K C.Adv.Funct.Mater.,2015,25:7145.
[75] Sinaim H,Ham D J,Lee J S,Phuruangrat A,Thongtem S,Thongtem T.J.Alloy.Compd.,2015,516:172.
[76] Qiu W M,Hadipour A,Muller R,Conings B,Boyen H G,Heremans P,Froyen L.ACS Appl.Mater.Interf.,2015,6:16335.
[77] Guo J,Zhao Y,Zhao J,Wu J,Song Y,Tan Y,Wang F,Hao X,Lu Y,Bao F.Eur.J.Inorg.Chem.,2014,21:3322.
[78] Liu F,Shao S,Guo X,Zhao Y,Xie Z.Sol.Energy Mater.Sol.Cells,2010,94:842.
[79] Wong K H,Ananthanarayanan K,Luther J,Balaya P J.Phys.Chem.C,2012,116:16346.
[80] Murase S,Yang Y.Adv.Mater.,2012,24:2459.
[81] Dong W J,Jung G H,Lee J L.Sol.Energy Mater.Sol.Cells,2013,116:94.
[82] Wang G,Jiu T,Li P,Li J,Sun C,Lu F,Fang J.Sol.Energy Mater.Sol.Cells,2014,120:603.
[83] Liang J,Zu F S,Ding L,Xu M F,Shi X B,Wang Z K,Liao L S.Appl.Phys.Express,2014,7:111601.
[84] Wang G J,Jiu T G,Li P D,Li J,Sun C M,Lu F S,Fang J F.Sol.Energy Mater.Sol.Cells,2014,120:603.
[85] Wang J T,Zhang J,Meng B,Zhang B H,Xie Z Y,Wang L X.ACS Appl.Mater.Interf.,2015,7:13590.
[86] Qiu W M,Hadipour A,Muller R,Conings B,Boyen H G,Heremans P,Froyen L.ACS Appl.Mater.Interf.,2014,6:16335.
[87] Qiu W M,Muller R,Voroshazi E,Conings B,Carleer R,Boyen H G,Turbiez M,Froyen L,Heremans P,Hadipour A.ACS Appl.Mater.Interf.,2015,7:3581.
[88] Arae S,Nakajima K,Takahashi T,Ogasawara M.Organometallics,2015,34:1197.
[89] Okayama Y,Tsuji S,Toyomori Y,Mori A,Arae S,Wu W Y,Takahashi T,Ogasawara M.Angew.Chem.Int.Ed.,2015,54:4927.
[90] Zilberberg K,Gharbi H,Behrendt A,Trost S,Riedl T.ACS Appl.Mater.Interfaces,2012,4:1164.
[91] Ghaffari M,Zhou Y,Xu H P,Lin M R,Kim T Y,Ruoff R S,Zhang Q M.Adv.Mater.,2013,25:4879.
[92] Lee Y J,Yi J,Gao G F,Koerner H,Park K,Wang J,Luo K,Vaia R A,Hsu J W P.Adv.Energy Mater.,2012,2:1193.
[93] Jasieniak J J,Seifter J,Jo J,Mates T,Heeger A J.Adv.Funct.Mater.,2012,22:2594.
[94] Qiu W M,Muller R,Voroshazi E,Conings B,Carleer R,Boyen H G,Turbiez M,Froyen L,Heremans P,Hadipour A.ACS Appl.Mater.Interf.,2015,7:3581.
[95] Tan Z A,Qian D P,Zhang W Q,Li L J Q,Ding Y Q,Xu Q,Wang F Z,Li Y F.J.Mater.Chem.A,2013,1:657.
[96] Illyaskutty N,Kohler H,Trautmann T,Schwotzer M,Pillai V P M.J.Mater.Chem.C,2013,1:3976.
[97] Yang Q D,Xue H T,Xia Y,Guan Z Q,Cheng Y H,Tsang S W,Lee C S.Electrochim.Acta,2015,185:83.
[98] Wang C,Wu L X,Wang H,Zuo W H,Li Y Y,Liu J P.Adv.Funct.Mater.,2015,25:3524.
[99] Wang J S,Li X,Zhang S F,Lu R W.Nanoscale,2013,5:4823.
[100] Girotto C,Voroshazi E,Cheyns D,Heremans P,Rand B P.ACS Appl.Mater.Interfaces,2011,3:3244.
[101] Lin S Y,Wang C M,Kao K S,Chen Y C,Liu C C.J.Sol-Gel Sci.Technol.,2010,53:51.
[102] Yang T B,Wang M,Cao Y,Huang F,Huang L,Peng J B,Gong X,Cheng S Z D,Cao Y.Adv.Energy Mater.,2012,2:523.
[103] Xie F X,Choy W C H,Wang C D,Li X C,Zhang S Q,Hou J H.Adv.Mater.,2013,25:2051.
[104] Liu J,Wu X,Chen S,Shi X,Wang J,Huang S,Guo X,He G J.Mater.Chem.C,2014,2:158.
[105] Meyer J,Khalandovsky R,Gorrn P,Kahn A.Adv.Mater.,2011,23:70.
[106] Egger D A,Liu Z F,Neaton J B,Kronik L.Nano Letters,2015,15:2448.
[107] Nechyporchuk O,Pignon F,Belgacem M J.Mater.Sci.,2015,50:531.
[108] Huang J H,Huang T Y,Wei H Y,Ho K C,Chu C W.RSC Adv.,2012,2:7487.
[109] Kishi M,Kubo Y,Ishikawa R,Shirai H,Ueno K.Jap.J.App.Phys.,2013,52:020202.
[110] Xu M F,Cui L S,Zhu X Z,Gao C H,Shi X B,Jin Z M,Wang Z K,Liao L S.Org.Electron.,2013,14:657.
[111] Kato S,Ishikawa R,Kubo Y,Shirai H,Ueno K.Jap.J.App.Phys.,2011,50:071604.
[112] Yu X Y,Wang L,Liu J F,Sun X M.Chemelectrochem,2014,1:1476.
[113] Peng X,Huo K F,Fu J J,Gao B,Wang L,Hu L S,Zhang X M,Chu P K.Chemelectrochem,2015,2:512.
[114] Chen Z B,Cummins D,Reinecke B N,Clark E,Sunkara M K,Jaramillo T F.Nano Letters,2011,11:4168.
[115] Gacitua M,Boutaleb Y,Cattin L,Abe S Y,Lare Y,Soto G,Louarn G,Morsli M,Rehamnia R,del Valle M A,Drici A,Bernede J C.Physica Status Solidi a-Applications and Materials Science,2010,207:1905.
[116] Zhao J B,Li Y K,Yang G F,Jiang K J,Lin H R,Ade H,Ma W,Yan H.Nature Energy,2016,1:15027.
[117] Wang Z Y,Zhang Y J,Zhang J Q,Wei Z X,Ma W.Adv.Energy Mater.,2016,1:1502456.
[118] Jia X K,Jiang Z Y,Chen X H,Zhou J P,Pan L K,Zhu F R,Sun Z,Huang S M.ACS Appl.Mater.Interfaces,2016,8:3792.
[119] Liu J,Lu S M,Zhu L,Li X C,Choy W C H.Nanoscale,2016,8:3638.
[1] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[2] 唐美瑶, 王岩岩, 申赫, 车广波. 二维硫化钼的溶液法制备及其复合材料在光、电催化领域的应用[J]. 化学进展, 2018, 30(11): 1646-1659.