English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 536-549 DOI: 10.7536/PC180933 前一篇   后一篇

• •

纳米光学传感器用于检测汞离子

沈洋1, 胡继文2, 刘婷婷1, 郜洪文1,**(), 胡张军2,**()   

  1. 1. 同济大学环境科学与工程学院 上海 200092
    2. 上海大学环境与化学工程学院 上海 200444
  • 收稿日期:2018-09-28 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 郜洪文, 胡张军
  • 基金资助:
    国家自然科学基金项目(21577098); 上海市自然科学基金项目(17ZR1410500)

Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials

Yang Shen1, Jiwen Hu2, Tingting Liu1, Hongwen Gao1,**(), Zhangjun Hu2,**()   

  1. 1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2. College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
  • Received:2018-09-28 Online:2019-01-15 Published:2019-01-14
  • Contact: Hongwen Gao, Zhangjun Hu
  • About author:
    ** E-mail:(Hongwen Gao)
    ** E-mail:(Zhangjun Hu)
  • Supported by:
    National Natural Science Foundation of China(21577098); Shanghai Natural Science Foundation(17ZR1410500)

汞离子是毒性最大的重金属之一,对环境和人体都会造成严重的不良影响,开发能够快速检测环境中汞离子的分析方法引起了越来越多的关注。纳米材料由于其优良的光学性能和良好的稳定性,被广泛用于环境中汞离子的检测。本文主要综述了近年来一些代表性的基于纳米材料的汞离子荧光、比色传感器。根据纳米材料的不同,将这些传感器分为基于金、银、碳和硅基材料,以及量子点、有机纳米颗粒和其他纳米基材料的荧光、比色传感器,并分别从设计原理、识别性能和实际应用等方面对这些传感器进行了描述和讨论。最后对该领域的研究和发展提出了展望。

Mercury ion(Hg2+) is one of the most toxic heavy metals that has severe adverse effects on the environment and humans. Therefore, more and more attention has been paid to developing analytical approaches for the rapid detection of Hg2+. Nanomaterials are widely used for Hg2+ detection due to their potential optical advantages and stability. The nanosensors for Hg2+in recent years are highlighted in this review. According to the composition of nanomaterials, these sensors can be divided into nanosensors based on gold, silver, carbon and silicon nanomaterials, quantum dots, organic nanoparticles and other nanomaterials. These nanosensors are described and discussed respectively in terms of design principle, identification performance and practical application. Finally, the research prospect in this field is presented.

()
图1 基于金纳米颗粒的汞离子传感器传感机制示意图[32]
Fig. 1 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNPs[32]. Copyright 2018, Elsevier.
图2 基于金纳米颗粒的汞离子传感器传感机制示意图[34]
Fig. 2 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNPs[34]
图3 基于金纳米团簇的汞离子传感器传感机制示意图[40]
Fig. 3 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNCs[40]. Copyright 2018, Elsevier.
图4 基于金纳米团簇的汞离子传感器传感机制示意图[41]
Fig. 4 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNCs[41]
图5 基于金纳米团簇的汞离子传感器传感机制示意图[42]
Fig. 5 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNCs[42]
图6 基于银纳米颗粒的汞离子传感器传感机制示意图[51]
Fig. 6 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AgNPs[51]
图7 基于银纳米团簇的汞离子传感器传感机制示意图[53]
Fig. 7 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AgNCs[53]
图8 基于CH3NH3PbBr3钙钛矿量子点的汞离子传感器传感机制示意图[61]
Fig. 8 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CH3NH3PbBr3 QDs[61].Copyright 2018, Elsevier.
图9 基于硒化锌量子点的汞离子传感器传感机制示意图[62]
Fig. 9 Schematic illustration for the sensing mechanism of Hg2+ sensor based on ZnSe QDs[62]
图10 基于碲化镉量子点的汞离子传感器传感机制示意图[63]
Fig. 10 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CdTe QDs[63]. Copyright 2018, Elsevier.
图11 基于碳量子点的汞离子传感器传感机制示意图[69]
Fig. 11 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CQDs[69]
图12 基于胞嘧啶衍生碳量子点的汞离子传感器传感机制示意图[70]
Fig. 12 Schematic illustration for the sensing mechanism of Hg2+ sensor based on Cyt-dot[70]
图13 基于碳纳米点的汞离子传感器传感机制示意图[71]
Fig. 13 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CDs[71]
图14 基于碳纳米点的汞离子传感器传感机制示意图[72]
Fig. 14 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CDs[72]
图15 基于碳纳米点的汞离子传感器传感机制示意图[74]
Fig. 15 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CDs[74]. Copyright 2018, Elsevier.
图16 基于还原性氧化石墨烯的汞离子传感器传感机制示意图[75]
Fig. 16 Schematic illustration for the sensing mechanism of Hg2+ sensor based on rGO[75]
图17 基于有机纳米颗粒的汞离子传感器传感机制示意图[91]
Fig. 17 Schematic illustration for the sensing mechanism of Hg2+ sensor based on organic nanoparticles[91]
图18 基于四氧化三铁纳米颗粒的汞离子传感器传感机制示意图[102]
Fig. 18 Schematic illustration for the sensing mechanism of Hg2+ sensor based on Fe3O4 nanoparticles[102]. Copyright 2018, Elsevier.
图19 基于二氧化钛纳米材料的汞离子传感器传感机制示意图[105]
Fig. 19 Schematic illustration for the sensing mechanism of Hg2+ sensor based on TiO2 nanomaterial[105]
[1]
Li S, Li Y, Cao J, Zhu J, Fan L, Li X . Anal.Chem., 2014,86(20):10201.
[2]
Ran X, Sun H, Pu F, Ren J Qu X. Chem.Commun., 2013,49(11):1079.
[3]
Frost M S, Dempsey M J, Whitehead D E . Sens. Actuators B Chem., 2015,221:1003.
[4]
Momidi B K, Tekuri V, Trivedi D R . Spectrochim.Acta Part A, 2017,180:175.
[5]
Zhang L, Peng D, Liang R P, Qiu J D . TrAC,Trends Anal. Chem., 2018,102:280.
[6]
Bin J W, Yap S H K, Panwar N, Zhang L L, Lin B, Yong K T, Tjin S C, Ng W J, Majid M B. . Sens. Actuators B, 2016,237:142.
[7]
Cui L, Wu J ,Ju H X . Biosens. Bioelectron, 2015,63:276.
[8]
Tsekenis G, Filippidou M K, Chatzipetrou M, Tsouti V, Zergioti I, Chatzandroulis S . Sens. Actuators B, 2015,208:628.
[9]
Holmes P , James K A F, LevyL S . Sci. Total Environ., 2009,408(2):171.
[10]
Tchounwou P B, Ayensu W K, Ninashvili N, Sutton D. Environ.Toxicol ., 2003,18:149.
[11]
Ruiz-de-Cenzano M, Rochina-Marco A, Cervera M L, de la Guardia M . Environ. Saf., 2014,107:90.
[12]
Chen B B, Heng S J, Peng H Y, Hu B, Yu X, Zhang Z L, Pang D W, Yue X, Zhu Y . Anal. At. Spectrom., 2010,25:1931.
[13]
Aranda P R, Gil R A , Moyano S, de Vito I, Martinez L D. Hazard. Mater., 2009,161:1399. https://www.ncbi.nlm.nih.gov/pubmed/18572311

doi: 10.1016/j.jhazmat.2008.04.129     URL     pmid: 18572311
[14]
Rahman G M, Wolle M M, Fahrenholz T, Kingston H M, Pamuku M . Anal. Chem 2014,86(12):6130.
[15]
Wang N, Lin M, Dai H X ,Ma H Y. Biosens. Bioelectron, 2016,79:320.
[16]
Ding Y J, Wang S S, Li J H, Chen L X . TrAC. Trends Anal. Chem., 2016,82:175.
[17]
Chen G Q, Guo Z, Zeng G M, Tang L . Analyst, 2015,140:5400.
[18]
田春霞(Tian C X) (理化检验(化学分册)(Physical Testing and Chemical Analysis(Part B: Chemical Analysis)), 2017,53(10):1234.
[19]
Huang K, Jiao X J, Liu C, Wang Q, Qiu X Y, Zheng D S, He S, Zhao L C, Zeng X S . Dyes and Pigments, 2017,142:437.
[20]
Jiao Y, Zhang L, Zhou P . Talanta, 2016,150:14.
[21]
Liu B X, Huang Y K, Zhu X, Hao Y Q, Ding Y J, Wei W, Wang Q, Qu P ,Xu M T. Anal. Chim. Acta, 2016,912:139.
[22]
Zhao W Q, Liu X L, Lv H T, Fu H, Yang Y, Huang Z P ,Han A X. Tetrahedron Lett, 2015,56:4293.
[23]
Xiao H D, Li J H, Wu K T, Yin G, Quan Y W, Wang R Y . Sens. Actuators B, 2015,213:343.
[24]
Ullah N, Mansha M, Khan I, Qurashi A . TrAC. Trends Anal. Chem., 2018,100:155.
[25]
Link S, EI-Sayed M A . J. Phys. Chem. B, 1999,103:4212.
[26]
Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A . Science, 1997,277:1078.
[27]
Chansuvarn W, Tuntulani T, Imyim A . TrAC. Trends Anal. Chem., 2015,65:83.
[28]
Yeh Y C, Creran B, Rotello V M . Nanoscale, 2012,4:1871.
[29]
You C C, Chompoosor A, Rotello V M . Nano Today, 2007,2(3):34.
[30]
Xu X H, Li Y F, Zhao J T, Li Y Y, Lin J, Li B, Gao Y X, Chen C Y . Analyst, 2015,140:7841.
[31]
Zhang Z Y, Wang H, Chen Z P, Wang X Y, Choo J ,Chen L X. Biosens. Bioelectron, 2018,114:52.
[32]
Zohora N, Kumar D, Yazdani M, Rotello V M, Ramanathan R, Bansal V . ColloidsSurf. A, 2017,532:451.
[33]
Chansuvarn W, Tuntulani T, Imyim A . TrAC. Trends Anal. Chem., 2015,65:83.
[34]
Wang J, Fang X, Cui X, Zhang Y, Zhao H, Li X, He Y . Talanta, 2018,188:266.
[35]
Farzin L, Shamsipur M, Sheibani S . Talanta, 2017,174:619.
[36]
Wang L, Liu F Y, Sui N, Liu M H, Yu W W . Mikrochim. Acta, 2016,183:2855.
[37]
Yu T, Zhang T T, Zhao W, Xu J J, Chen H Y . Talanta, 2017,165:570.
[38]
Wang X Y, Yu J L, Wu X Q, Fu J Q, Kang Q, Shen D Z, Li J H ,Chen L X. Biosens. Bioelectron, 2016,81:438.
[39]
Zhao P, He K Y, Han Y T, Zhang Z, Yu M Z, Wang H H, Huang Y, Nie Z ,Yao S Z. Anal. Chem, 2015,87:9998.
[40]
Deng W, Dai R, Hu P, Li Q, Xiong X, Huang K, Huo F . Microchem. J 2018,141:163.
[41]
Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, Chen L . Sens. Actuators B, 2018,262:810.
[42]
Wang J, Ma S, Ren J, Yang J, Qu Y, Ding D, Zhang M, Yang G . Sens.Actuators B, 2018,267:342.
[43]
Li K, Wang K, Qin W W, Deng S H, Li D, Shi J Y, Huang Q, Fan C H . Am. Chem. Soc., 2015,137:4292. https://www.ncbi.nlm.nih.gov/pubmed/25816173

doi: 10.1021/jacs.5b00324     URL     pmid: 25816173
[44]
Lu C, Liu X J, Li Y F, Yu F, Tang L H, Hu Y J ,Ying Y B. ACS Appl. Mat. Interfaces, 2015,7:15395.
[45]
Huang Y Q, Fu S, Wang Y S, Xue J H, Xiao X L, Chen S H, Zhou B . Anal. Biochem 2018,410:7385.
[46]
Zhu Q, Li L, Mu L, Zeng X, Redshaw C, Wei G . J. Photochem. Photobiol. A, 2016,328:217.
[47]
Liu Y, Deng Y, Dong H M, Liu K K ,He N Y. Sci. China Chem, 2016,60:329.
[48]
Walekar L S, Hu P, Vafaei M H, Long M . Spectrochim. Acta Part A, 2018,198:168.
[49]
Lou T T, Chen Z P, Wang Y Q ,Chen L X. ACS Appl. Mater. Interfaces, 2011,3:1568.
[50]
Sharma P, Mourya M, Choudhary D, Goswami M, Kundu I, Dobhal M P ,Tripathi C S P, Guin D Sens. Actuators B, 2018,268:310.
[51]
Rajamanikandan R ,Ilanchelian M. Mater. Today Commun, 2018,15:61.
[52]
Faham S, Ghavami R, Rasouli Z ,Khayatian G. Int. J. Environ. Anal. Chem, 2018,98:82.
[53]
Li C, Wei C . Sens. Actuators B, 2017,242:563.
[54]
Chen L, Fu X L, Lu W H ,Chen L X. ACS Appl. Mater. Interfaces, 2013,5:284.
[55]
Amirjani A, Haghshenas D F . Talanta, 2019,192:418.
[56]
Tan J, Guo M L, Tan L, Geng Y Y, Huang S Y, Tang Y W, Su C C, Lin C C, Liang Y . Sens. Actuators B, 2018,274:627.
[57]
Zhu J, Chang H, Li J J, Li X, Zhao J W . Spectrochim. Acta Part A, 2018,188:170.
[58]
傅骏青(Fu J Q), 王晓艳(Wang X Y), 李金花(Li J H), 陈令新(Chen L X) . 化学进展(Progress in Chemistry), 2016,28(01):83.
[59]
王欣然(Wang X R), 李博伟(Li B W), 尤慧艳(You H Y), 陈令新(Chen L X) . 分析化学(Chinese Journal of Analytical Chemistry), 2015,43(10):1499.
[60]
Qi J, Li B W, Wang X R, Zhang Z, Wang Z, Han J L, Chen L X . Sens. Actuators B, 2017,251:224.
[61]
Lu L Q, Tan T, Tian X K, Li Y, Deng P. Anal.Chim. Acta, 2017,986:109.
[62]
Zhou Z Q, Yan R, Zhao J, Yang L Y, Chen J L, Hu Y J, Jiang F L, Liu Y . Sens. Actuators B, 2018,254:8.
[63]
Ghasemi F , Hormozi-Nezhad M R, Mahmoudi M. Sens. Actuators B, 2018,259:894.
[64]
Pisanic T R, Zhang Y, Wang T H . Analyst, 2014,139:2968.
[65]
Chen G, Song F, Xiong X ,Peng X. Ind. Eng. Chem. Res., 2013,52:11228.
[66]
Yan F Y, Zou Y, Wang M, Mu X L, Yang N, Chen L . Sens. Actuators B, 2014,192:488.
[67]
Li H T, Ming H, Liu Y, Yu H, He X D, Huang H, Pan K M, Kang Z H ,Lee S T. New J. Chem., 2011,35:2666.
[68]
Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y . Chem. Commun 2011,47:6695.
[69]
Meng A, Xu Q, Zhao K, Li Z, Liang J, Li Q . Sens. Actuators B, 2018,255:657.
[70]
Luo L, Song T, Wang H, Yuan Q, Zhou S . Spectrochim. Acta Part A, 2018,193:95.
[71]
Yan F, Shi D, Zheng T, Yun K, Zhou X, Chen L . Sens. Actuators B, 2016,224:926.
[72]
Tabaraki R ,Sadeghinejad N. Ecotoxicol. Environ. Saf, 2018,153:101.
[73]
Patidar R, Rebary B, Bhadu G R, Paul P . Lumin., 2016,173:243.
[74]
Liang X C, Chen S, Gao J, Zhang H, Wang Y, Wang J H, Feng L . Sens. Actuators B, 2018,265:293.
[75]
Liu Y, Wang X, Wu H . Biosens. Bioelectron 2017,87:129.
[76]
Huang J H, Su X F ,Li Z G. Biosens. Bioelectron, 2017,96:127.
[77]
Huang P J, van Ballegooie C, Liu J . Analyst, 2016,141:3788.
[78]
Liu Z Y, Ding J ,Xue J M. New J. Chem., 2009,33(1):88.
[79]
Genovese D, Montalti M, Prodi L, Rampazzo E, Zaccheroni N, Tosic O, Altenhoner K, May F, Mattay J . Chem. Commun 2011,47(39):10975.
[80]
Zhu B, Ren G, Tang M, Chai F, Qu F, Wang C, Su Z . Dyes and Pigments, 2018,149:686.
[81]
LeCroy G E, Sonkar S K, Yang F, Veca L M, Wang P, Tackett K N, Yu J J, Vasile E, Qian H, Liu Y . ACS Nano, 2014,8:4522.
[82]
Wang H S, Wang C, He Y K, Xiao F N, Bao W J, Xia X H ,Zhou G J. Anal. Chem, 2014,86:3013.
[83]
Ding Y, Zhu W, Xu Y, Qian X . Sens. Actuators B, 2015,220:762.
[84]
Wang F, Gu Z, Lei W, Wang W, Xia X, Hao Q . Sens. Actuators B, 2014,190:516.
[85]
Guo X, Mao F, Wang W, Yang Y, Bai Z. ACS Appl . Mater. Interfaces, 2015,7:14983.
[86]
Yang H H, Zhang S Q, Chen X L, Zhuang Z X, Xu J G ,Wang X R. Anal. Chem, 2014,76:1316.
[87]
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S . Adv. Mater 2010,22:2729.
[88]
Liu Z Y, Ding J ,Xue J M. New J. Chem., 2009(3):88.
[89]
Zeng X, Xu Y, Chen X, Ma W ,Zhou Y. Appl. Surf. Sci, 2017,423:1103.
[90]
Mir N, Heidari A, Beyzaei H, Mirkazehi-Rigi S ,Karimi P. Chem. Eng. J, 2017,327:648.
[91]
Wang H, Zhang P, Chen J, Li Y, Yu M, Long Y, Yi P . Sens. Actuators B, 2017,242:818.
[92]
Othman A B, Lee J W, Wu J S, Kim J S, Abidi R, Thuéry P ,Strub J M, van Dorsselaer A, Vicens J . Org. Chem., 2007,72:7634.
[93]
Dhir A, Bhalla V, Kumar M . Org. Lett 2008,10:4891.
[94]
Oguz M, Bhatti A A, Karakurt S, Aktas M, Yilmaz M . Spectrochim. Acta Part A, 2017,171:340.
[95]
Bhatti A A, Oguz M ,Yilmaz M. Appl. Surf. Sci, 2018,434:1217.
[96]
Tang Y, Yang S, Zhang N, Zhang J . Cellulose, 2014,21:335.
[97]
Sacui I A, Nieuwendaal R C, Burnett D J, Stranick S J, Jorfi M, Weder C, Foster E J, Olsson R T ,Gilman J W. ACS Appl Mater. Interfaces, 2014,6:6127.
[98]
Eyley S, Thielemans W . Nanoscale, 2014,6:7764.
[99]
Chen J D, Zhou Z X, Chen Z X, Yuan W Z ,Li M Q. New J Chem., 2017,41:10272.
[100]
Shamsipur M, Sadeghi M, Beyzavi M H ,Sharghi H. Mater. Sci. Eng. C, 2015,48:424.
[101]
Wang Y, Wu F . Polymer, 2015,56:223.
[102]
Lv X, Wu W, Niu C, Huang D, Wang X, Zhang X . Talanta, 2016,151:62.
[103]
Palomares E, Vilar R ,Durrant J R . Chem. Commun, 2004,4:362.
[104]
Nazeeruddin M K, Censo D D, Humphry-Baker R ,Grtzel M . Adv. Funct. Mater, 2006,16:189.
[105]
Shahat A, Ali E A ,l Shahat M F. Sens.Actuators B, 2015,221:1027.
[106]
Zhang H, Xia Y S . ACS Sensors, 2016,1:384.
[107]
Li S P, Lai J P, Qi L M, Saqib M, Majeed S, Tong Y J, Xu G B . Analyst, 2016,141:2362.
[108]
Chen L, Li J H ,Chen L X. ACS Appl Mater. Interfaces, 2014,6:15897.
[109]
Chen J L, Yang P C, Wu T, Lin Y W . Spectrochim. Acta Part A, 2018,199:301.
[110]
Yang Q, Li J H, Wang X Y, Peng H L, Xiong H ,Chen L X. Biosens. Bioelectron, 2018,112:54.
[111]
贾梦凡(Jia M F), 张忠(Zhang Z), 杨兴斌(Yang X B), 李金花(Li J H) 陈令新(Chen L X). 中国科学:化学(ientia Sinica(Chimica)), 2017,47(03):300.
[112]
Guo Z Y, Duan J, Yang F, Li M, Hao T T, Wang S, Wei D Y . Talanta, 2012,93:49.
[113]
Duan J ,Guo Z Y. Chinese Chem. Lett., 2012,23:225.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[7] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[8] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[9] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[10] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[11] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[12] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[15] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
阅读次数
全文


摘要

纳米光学传感器用于检测汞离子