English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1844-1851 DOI: 10.7536/PC180308 前一篇   后一篇

• 综述 •

固体核磁共振定量表征方法及其在高分子结构研究中的应用

舒婕1*, 顾佳丽1, 赵辉鹏2   

  1. 1. 苏州大学分析测试中心 苏州 215123;
    2. 东华大学分析测试中心 上海 201620
  • 收稿日期:2018-03-05 修回日期:2018-06-29 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 舒婕 E-mail:shujie@suda.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21673148,21303111)资助

Solid-State Nuclear Magnetic Resonance Techniques for Polymer Quantitative Investigation

Jie Shu1*, Jiali Gu1, Huipeng Zhao2   

  1. 1. Analysis and Testing Center, Soochow University, Suzhou 215123, China;
    2. Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
  • Received:2018-03-05 Revised:2018-06-29 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21673148, 21303111).
高分子材料拥有众多优良的特性,使其广泛应用于现代社会的生产、生活及高新科技等领域。对于高分子特性的研究离不开微观物理、化学结构的定量表征。在众多表征高分子结构定量信息的实验技术中,固体核磁共振(SSNMR)发挥着重要的作用。它可以定量表征高分子的化学结构、材料体系的相成分及共混组分等,从而实现了难溶高分子产物的结构鉴定,以及高分子微观物理、化学结构关联材料性能的研究。然而,传统的SSNMR定量方法(直接激发法,DD)往往需要耗费十几个小时甚至数天的实验时间。交叉极化方法(CP)虽然大大缩短了实验时间,却往往无法提供定量的信息。基于此,研究者们提出了多个定量CP的实验方法,同时满足了方法定量性和实验耗时短的需求。本文综述了传统SSNMR定量方法及几种定量的CP方法,简单介绍了每个方法的基本原理,并平行阐述了实验方法的应用范围及特点,通过部分实例展示了SSNMR定量方法在高分子材料领域的应用价值,为研究者研发新型的高分子材料提供可靠并有效的结构表征手段。
Polymers have been widely used nowadays owing to their versatile properties, which firmly relate to their molecular physical and chemical structures. Therefore, the quantitative and quasi-quantitative characterization of polymer chemical and physical structures is essential in developing novel polymer materials. Among various characterization methods, solid-state nuclear magnetic resonance (SSNMR) plays an essential role in quantitative investigation, which is capable of providing quantitative information on chemical structure of polymers, phase composition of multi-phase systems as well as component content of block copolymers or polymer blends. However, traditional SSNMR quantitative method consumes very long experimental time for most of the systems. Cross polarization (CP) method, as a widely-used SSNMR technique, is capable of providing a spectrum within much shorter time. However, CP is mostly not quantitative. Therefore, several quantitative CP methods were proposed in past years, which are both quantitative and time-saving. In this article, we present an overview of the SSNMR quantitative methods, including the traditional techniques and the newly proposed CP methods in past twelve years. Basic principle and properties of each method are elucidated. In addition, several application examples are introduced which is aimed to assist the researchers in their works of polymer quantitative study.
Contents
1 Introduction
2 SSNMR quantitative techniques and the applications for polymer study
2.1 Direct polarization techniques (DP and DD)
2.2 Cross polarization technique (CP)
2.3 Quantitative CP methods
3 Conclusion

中图分类号: 

()
[1] Peng M, Chen Q. Chem. Phys. Lett., 2008, 456:189.
[2] Zhang L, Gellerstedt G. Magn. Reson. Chem., 2007, 45:37.
[3] Peng M, Liu W, Yang G, Chen Q, Luo S F, Zhao G, Yu L. Polym. Degrad. STab., 2008, 93:476.
[4] Mcneill C R, Watts B, Thomsen L, Belcher W J, Greenham N C, Dastoor P C. Nano lett., 2006, 6:1202.
[5] Lehnert R J, Hendra P J, Everall N. Polym. Communi., 1995, 36:2473.
[6] Gombás Á, Szabó-Révész P, Kata M, Regdon Jr. G,Erõs I. J. Therm. Anal. Calorim., 2002, 68:503.
[7] Lehnert R J, Hendra P J, Everall N, Clayden N J. Polymer, 1997, 38:1521.
[8] Guttman C M, Flynn K M, Wallace W E, Kearsley A J. Macromolecules, 2009, 42:1695.
[9] Hansen M R, Graf R, Spiess H W. Chem. Rev., 2016, 116:1272.
[10] Shu J, Dudenko D, Esmaeili M, Park J H, Puniredd S R, Chang J Y, Wreiby D W, Pisula W, Hansen M R. J. Am. Chem. Soc., 2013, 153:11075.
[11] Yuan Y, Shu J, Kolman K, Kiersnowski, Bubeck C, Zhang J M, Hansen M R. Macromolecules, 2016, 49:9493.
[12] Zhang T, Yuan Y, Cui X, Yin H, Gu J, Huang H, Shu J. J. Polym. Sci. Part B:Polym. Phys., 2018, 56:751.
[13] Yang L Y, Wei D X, Xu M, Yao Y F, Chen Q. Angew. Chem. Int. Ed. Engl., 2014, 126:3705
[14] Dudenko D, Kiersnowski A, Shu J, Pisula W, Sebastiani D, Spiess H, W, Hansen M R. Angew. Chem. Int. Ed. Engl., 2012, 51:11068.
[15] Princi E, Vicini S, Proietti N, Capitani D. Eur. Polym. J., 2005, 41:1196.
[16] Young S K, Jarrett W L, Mauritz K A. Polymer, 2002, 43:2311.
[17] Pallister P J, Barry S T. J. Chem. Phys., 2017, 146:052812.
[18] Hartmann S, Hahn E. Phys. Rev., 1962, 128:2042.
[19] Kolodziejski W, Klinowski J. Chem. Rev., 2002, 102:613.
[20] Chen J, Shu J, Schobloch S, Kroeger A, Graf R, Muñoz-Espí R, Landfester K, Ziener U. Macromolecules, 2012, 45:5108.
[21] Zhang L L, Chen Q, Hansen E W. Macromol. Chem. Phys., 2005, 206:246.
[22] Zhang L, Liu Z, Chen Q, Hansen E W. Macromolecules, 2007, 40:5411.
[23] Hou G J, Deng F, Ding S W, Fu R Q, Yang J, Ye C H. Chem. Phys. Lett., 2006, 421:356.
[24] Hou G J, Deng F, Ye C H, Ding S W. J. Chem. Phys., 2006, 124:234512.
[25] Oas T G, Griffin R G, Levitt M H. J. Chem. Phys.,1988, 692.
[26] Hou G J, Ding S W, Zhang L M, Deng F. J. Am. Chem. Soc., 2010, 132:5538.
[27] Shu J, Chen Q, Zhang S M. Chem. Phys. Lett., 2008, 462:125.
[28] Zhang S M, Xu P, SØrensen O W, Ernst R R. Concepts Magn. Reson., 1994, 6:275.
[29] Shu W F, Zhang S M. Chem. Phys. Lett., 2011, 511:424.
[30] Zhao H P, Chen Q, Zhang S M. Microporous Mesoporous Mater., 2012, 155:240.
[31] Zhao H P, Shu J, Chen Q, Zhang S M. Solid State Nucl. Magn. Reson., 2012, 43/44:56.
[32] (a)顾佳丽(Gu J L), 张田田(Zhang T T), 赵辉鹏(Zhao H P), 舒婕(Shu J), 李晓虹(Li X H). 高等学校化学学报(Chem. J. Chinese U.), 2018, 3:463.; (b)Gu J, Zhang T, Li X, Shu J. Polymer Testing, 2018, 71:192.
[33] Shu J, Li P, Chen Q, Zhang S. Macromolecules, 2010, 43:8993.
[34] Zhang S M, Wu X L, Zhang H P, Wu X W. Chem. Phys. Lett., 1990, 165:465.
[35] 舒婕(Shu J). 华东师范大学博士论文(Doctoral Dissertation of East China Normal University), 2009.
[36] Raya J, Perrone B, Hirschinger J. J. Magn. Reson., 2013, 227:93.
[37] Raya J, Hirschinger J. J. Magn. Reson., 2017, 281:253.
[38] Johnson R L, Schmidt-Rohr K. J. Magn. Reson., 2014, 239:44.
[39] Liu H W, Zhou X Y, Chen Q, Zhang S M. Chem. Phys. Lett., 2017, 679:233.
[40] Bernardinelli O D, Lima M A, Rezendel C A, Polikarpov I, deAzevedo E R. Biotchnol Biofuels, 2015, 8:110.
[1] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[2] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[3] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[4] 陈峥, 商赢双, 张海博, 姜振华. 高分子凝聚态结构与化学[J]. 化学进展, 2020, 32(8): 1115-1127.
[5] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[6] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[7] 白阳, 阎晓晨, 刘彩萍, 姚灏. H型聚合物的合成及性质[J]. 化学进展, 2020, 32(12): 1879-1884.
[8] 潘朝莹, 马建中, 张文博, 卫林峰. 柔性导电高分子复合材料在应变传感器中的应用*[J]. 化学进展, 2020, 32(10): 1592-1607.
[9] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[10] 许颖, 高婷婷, 王启晓, 屈阳, 刘宏飞, 辛渊蓉. 高分子类型MONOLITH材料的制备技术及其作为亲和色谱固定相用于分离生物大分子的应用[J]. 化学进展, 2018, 30(8): 1112-1120.
[11] 那向明, 周炜清, 李娟, 苏志国, 马光辉. 高分子多孔微球产品的制备及其在类病毒颗粒分离纯化中的应用[J]. 化学进展, 2018, 30(1): 5-13.
[12] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[13] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[14] 刘森阳, 彭了, 袁金颖, 朱晓夏. 基于胆汁酸的刺激响应聚合物[J]. 化学进展, 2016, 28(8): 1121-1130.
[15] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.