English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 581-595 DOI: 10.7536/PC200437 前一篇   后一篇

• 综述 •

生物基高分子型止血材料和伤口敷料

林建云1, 罗时荷1(), 杨崇岭2(), 肖颖1, 杨丽庭1(), 汪朝阳1()   

  1. 1 华南师范大学化学学院 教育部环境理论化学重点实验室 广州市生物医药分析化学重点实验室 广州 510006
    2 广东轻工职业技术学院 广州 510300
  • 收稿日期:2020-04-23 修回日期:2020-07-06 出版日期:2021-04-20 发布日期:2020-10-15
  • 基金资助:
    国家自然科学基金项目(20772035); 广东省科技计划项目(2017A010103016); 广东省自然科学基金项目(2021A1515012342); 广东省功能分子工程重点实验室资助课题(2017kf01); 广州市科技计划项目(202002030362); 广州市科技计划项目(201607010301)

Bio-Based Polymeric Hemostatic Material and Wound Dressing

Jianyun Lin1, Shihe Luo1(), Chongling Yang2(), Ying Xiao1, Liting Yang1(), Zhaoyang Wang1()   

  1. 1 School of Chemistry, South China Normal University,Guangzhou 510006, China
    2 Guangdong Industry Polytechnic, Guangzhou 510300, China
  • Received:2020-04-23 Revised:2020-07-06 Online:2021-04-20 Published:2020-10-15
  • Supported by:
    the National Natural Science Foundation of China(20772035); the Guangdong Provincial Science and Technology Project(2017A010103016); the Natural Science Foundation of Guangdong Province(2021A1515012342); the Open Fund of the Key Laboratory of Functional Molecular Engineering of Guangdong Province in SCUT(2017kf01); and the Science and Technology Program of Guangzhou(202002030362); and the Science and Technology Program of Guangzhou(201607010301)

伤口的快速止血和愈合对人类的生命保障和身体健康有十分重要的影响,使得伤口护理材料的研究备受关注。其中,从动植物中提取或由生物基单体合成而得的生物基高分子材料,因具有良好的物理性能、生物活性、生物相容性、生物降解性和生物可吸收性等优点,被人们通过物理或化学方法,进行改性或药物负载,制成具有止血、杀菌、保护和促进伤口愈合等功能的止血材料和伤口敷料。本文从化学组成、制备方法、材料结构、评价方法和生物活性等多角度综述了近年来(特别是近5年来)聚乳酸、壳聚糖、海藻酸钠、透明质酸、蛋白质和聚磷酸盐等常见的生物基高分子在止血材料和伤口敷料方面的国内外研究进展,并分析对比了国内外研究水平。展望未来的研究和发展方向,在原料的种类拓宽、材料的多功能化和仿生化等方面仍待努力。

The rapid hemostasis and healing of wounds have a very important effect on human life security and physical health. During the treatment process of wounds, careful, targeted, and effective treatment is required to prevent infection and accelerate tissue regeneration. Thus, the research on wound care materials attracted much attention. Among them, bio-based polymer materials extracted from animals and plants or synthesized from bio-based monomers, having the advantages of good physical properties, biological activity, biocompatibility, biodegradability and bioabsorbability, have been modified or drug-loaded by physical or chemical methods to produce hemostatic materials and wound dressings with functions of hemostasis, sterilization, protection and promotion of wound healing. Herein, we review the progress of domestic and foreign research on hemostatic materials and wound dressings based on common bio-based polymers, such as polylactic acid, chitosan, sodium alginate, hyaluronic acid, protein and polyphosphate in recent years from multiple angles of chemical composition, synthetic route, preparation method, material structure, evaluation model and biological activity. And the research level at home and abroad on these hemostatic materials from bio-sourced and renewable natural resources is also analyzed and compared. Predictably, the main research directions will still be further broadening the types of raw materials as well as making multifunctional and biomimetic materials.

Contents

1 Introduction

2 Polylactic acid materials

2.1 Polylactic acid

2.2 Polylactic acid-Polyethylene glycol

2.3 Poly(lactic acid-co-glycolic acid)

2.4 Other modified PLAs

3 Polysaccharides

3.1 Chitosans

3.2 Alginates

3.3 Hyaluronic acids

3.4 Celluloses

4 Proteins and polypeptides

5 Polyphosphates

6 Conclusion and outlook

()
图1 聚乳酸及改性聚乳酸的典型结构:a) PLA, b) PLA-PEG, c) PLGA
Fig.1 Typical chemical structure of PLA and modified PLAs: a) PLA, b) PLA-PEG, c) PLGA
图2 止血剂改性PLA共聚物的化学结构:a) PLA-b-PDMAEMA, b) P(LA-co-TA), c) P(LA-co-ABA)
Fig.2 Chemical structure of hemostatic modified PLA copolymers: a) PLA-b-PDMAEMA, b) P(LA-co-TA), c) P(LA-co-ABA)
图3 制备路线:a)季铵化壳聚糖-g-聚苯胺(QCSP);b)苯甲醛基功能化聚乙二醇-聚(癸二酸-甘油)酯(PEGS-FA)
Fig.3 Preparation route: a) Quaternized Chitosan-g-Polyaniline(QCSP); b) Poly(ethylene glycol)-co-Poly(glycerol sebacate)-g-Formylbenzoic Acid(PEGS-FA)
[1]
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Adv. Drug Deliv. Rev., 2018, 129: 134.

URL     pmid: 29247766
[2]
Saporito F, Sandri G, Rossi S, Bonferoni M C, Riva F, Malavasi L, Caramella C, Ferrari F. Carbohydr. Polym., 2018, 184: 408.
[3]
Yu Y L, Li P F, Zhu C L, Ning N, Zhang S Y, Vancso G J. Adv. Funct. Mater., 2019, 29(35): 1904402.
[4]
Li G F, Quan K C, Liang Y P, Li T Y, Yuan Q P, Tao L, Xie Q, Wang X. ACS Appl. Mater. Interfaces, 2016, 8(51): 35071.
[5]
Yang X Q, Li N, Constantinesco I, Yu K, Kizhakkedathu J N, Brooks D E. Acta Biomater., 2016, 40: 212.
[6]
Chen K, Wang F Y, Liu S Y, Wu X F, Xu L M, Zhang D K. Int. J. Biol. Macromol., 2020, 148: 501.

URL     pmid: 31958554
[7]
Wang Y F, Yin M L, Li Z G, Liu Y, Ren X H, Huang T S. Colloids Surfaces B: Biointerfaces, 2018, 165: 199.

URL     pmid: 29482131
[8]
Bernal-Chávez S A, Alcalá-Alcalá S, Cerecedo D, Ganem-Rondero A. Eur. J. Pharm. Sci., 2020, 146: 105231.

URL     pmid: 32007518
[9]
Landsman T L, Touchet T, Hasan S M, Smith C, Russell B, Rivera J, Maitland D J, Cosgriff-Hernandez E. Acta Biomater., 2017, 47: 91.
[10]
Lokhande G, Carrow J K, Thakur T, Xavier J R, Parani M, Bayless K J, Gaharwar A K. Acta Biomater., 2018, 70: 35.

URL     pmid: 29425720
[11]
Sanandiya N D, Lee S, Rho S, Lee H, Kim I S, Hwang D S. Carbohydr. Polym., 2019, 208: 77.
[12]
Zhao X, Wu H, Guo B L, Dong R N, Qiu Y S, Ma P X. Biomaterials, 2017, 122: 34.

URL     pmid: 28107663
[13]
Luo S H, Wu Y C, Cao L, Wang Q F, Chen S X, Hao Z F, Jing L, Wang Z Y. Polym. Chem., 2017, 8(45): 7009.
[14]
Lin J Y, Luo S H, Chen S H, Yang L T, Xiao Y, Huang Z H, Wang Z Y. Polym. J., 2020, 52(6): 615.
[15]
Petrey A C, Obery D R, Kessler S P, Zawerton A, Flamion B, de la Motte C A. Blood, 2019, 134(9): 765.
[16]
Hador R, Botta A, Venditto V, Lipstman S, Goldberg I, Kol M. Angew. Chem. Int. Ed., 2019, 58(41): 14679.
[17]
Zhu Y Q, Romain C, Williams C K. Nature, 2016, 540(7633): 354.

URL     pmid: 27974763
[18]
Kim Y J, Kim J S, Lee S Y, Mahajan R L, Kim Y T. Int. J. Biol. Sci., 2020, 144: 135.
[19]
Marin P, Tschan M J L, Isnard F, Robert C, Haquette P, Trivelli X, Chamoreau L M, GuÉrineau V, Del Rosal I, Maron L, Venditto V, Thomas C M. Angew. Chem. Int. Ed., 2019, 58(36): 12585.
[20]
Qi M, Dong Q, Wang D W, Byers J A. J. Am. Chem. Soc., 2018, 140(17): 5686.

URL     pmid: 29672028
[21]
Shin H M, Ju Y, Kim G, Lee J W, Seo M W, Sim J H, Yang J S, Noh S, Kim J, Kim H R. Adv. Funct. Mater., 2019, 29(14): 1970092.
[22]
Li W Q, Wu D W, Zhu S S, Liu Z B, Luo B H, Lu L, Zhou C R. Chem. Eng. J., 2019, 365: 270.
[23]
Luo S H, Wu Y C, Cao L, Lin J Y, Gao J, Chen S X, Wang Z Y. Macromol. Chem. Phys., 2019, 220(5): 1800475.
[24]
Ladelta V, Zapsas G, Abou-Hamad E, Gnanou Y, Hadjichristidis N. Angew. Chem. Int. Ed., 2019, 58(45): 16267.
[25]
Ribba L, Tamayo L, Flores M, Riveros A, Kogan M J, Cerda E, Goyanes S. J. Appl. Polym. Sci., 2019, 136(17): 47369.
[26]
Wakabayashi T, Yagi H, Tajima K, Kuroda K, Shinoda M, Kitago M, Abe Y, Oshima G, Hirukawa K, Itano O, Kitagawa Y. Surg. Innov., 2019, 26(3): 312.

URL     pmid: 30895890
[27]
Komachi T, Sumiyoshi H, Inagaki Y, Takeoka S, Nagase Y, Okamura Y. J. Biomed. Mater. Res., 2017, 105(7): 1747.
[28]
Li J N, Feng X R, Shi J, Liu T J, Ding J X. ACS Omega, 2018, 3(3): 2715.

URL     pmid: 30023849
[29]
Gong G F, Cao J F, Xu A, Xun Y J. J. Jiangsu Univ. Nat. Sci. Ed., 2020, 41(1): 46.
巩桂芬, 曹景飞, 徐阿文, 荀阳舰. 江苏大学学报(自然科学版), 2020, 41(1): 46.
[30]
Wyrwa R, Otto K, Voigt S, Enkelmann A, Schnabelrauch M, Neubert T, Schneider G. Mater. Sci. Eng.: C, 2018, 93: 419.
[31]
Zhang S Q, Ye J W, Sun Y, Kang J, Liu J H, Wang Y, Li Y C, Zhang L H, Ning G L. Chem. Eng. J., 2020, 390: 124523.
[32]
Birajdar M S, Halake K S, Lee J. J. Ind. Eng. Chem., 2018, 63: 117.
[33]
Lashof-Sullivan M, Holland M, Groynom R, Campbell D, Shoffstall A, Lavik E. ACS Biomater. Sci. Eng., 2016, 2(3): 385.

URL     pmid: 27672679
[34]
Wang Z Y, Zhao Y M, Wang F. J. Appl. Polym. Sci., 2006, 102(1): 577.
[35]
Shen X, Liu X, Li R Y, Yun P, Li C L, Su F, Li S M. J. Biomater. Sci. Polym. Ed., 2017, 28(15): 1677.
[36]
Pal N, Banerjee S, Roy P, Pal K. Mater. Sci. Eng.: C, 2019, 104: 109956.
[37]
Barman T K, Kumar M, Chaira T, Dalela M, Gupta D, Jha P K, Yadav A S, Upadhyay D J, Raj V S, Singh H. Nanomed.: Nanotechnol. Biol. Med., 2018, 14(4): 1213.
[38]
Toncheva A, Paneva D, Manolova N, Rashkov I. Macromol. Res., 2011, 19(12): 1310.
[39]
Chitrattha S, Phaechamud T. Mater. Sci. Eng.: C, 2016, 58: 1122.
[40]
Phaechamud T, Chitrattha S. Mater. Sci. Eng.: C, 2016, 61: 744.
[41]
Li C H, Ma C Y, Zhang Y, Liu Z H, Xue W. J. Biomater. Appl., 2016, 30(10): 1485.

URL     pmid: 26980550
[42]
Li L J, Liu X Y, Niu Y Q, Ye J F, Huang S W, Liu C, Xu K T. J. Biomed. Mater. Res., 2017, 105(5): 1200.
[43]
Wang Z Y, Zhao Y M, Wang F, Wang J. J. Appl. Polym. Sci., 2006, 99(1): 244.
[44]
Kim K T, Lee J Y, Kim D D, Yoon I S, Cho H J. Pharmaceutics, 2019, 11(6): 280.
[45]
Yang F, Song F L, Pan Y F, Wang Z Y, Yang Y Q, Zhao Y M, Liang S Z, Zhang Y M. J. Microencapsul., 2010, 27(2): 133.

URL     pmid: 20121486
[46]
Gracia E, García M T, Rodríguez J F, de Lucas A, Gracia I. J. Supercrit. Fluids, 2018, 141: 60.
[47]
Garcia-Orue I, Gainza G, Garcia-Garcia P, Gutierrez F B, Aguirre J J, Hernandez R M, Delgado A, Igartua M. Int. J. Pharm., 2019, 556: 320.
[48]
Holmkvist A D, Agorelius J, Forni M, Nilsson U J, Linsmeier C E, Schouenborg J. J. Nanobiotechnol., 2020, 18(1): 27.
[49]
Liu S J, Kau Y C, Chou C Y, Chen J K, Wu R C, Yeh W L. J. Membr. Sci., 2010, 355(1/2): 53.
[50]
Vázquez N, Sánchez-ArÉvalo F, Maciel-Cerda A, Garnica-Palafox I, Ontiveros-Tlachi R, Chaires-Rosas C, PiñÓn-Zarate G, Herrera-Enríquez M, Hautefeuille M, Vera-Graziano R, Castell-Rodríguez A. Biomed. Mater., 2019, 14(4): 045006.

URL     pmid: 30959495
[51]
Zhang Z Y, Kuang G Z, Zong S, Liu S, Xiao H H, Chen X S, Zhou D F, Huang Y B. Adv. Mater., 2018, 30(49): 1803217.
[52]
Mazor E, Zilberman M. Polym. Adv. Technol., 2017, 28(1): 41.
[53]
Norouzi M, Shabani I, Ahvaz H H, Soleimani M. J. Biomed. Mater. Res., 2015, 103(7): 2225.
[54]
Xia Q H, Liu Z W, Wang C H, Zhang Z X, Xu S S, Han C C. Biomacromolecules, 2015, 16(9): 3083.
[55]
Hu H R, Tang Y, Pang L B, Lin C L, Huang W H, Wang D P, Jia W T. ACS Appl. Mater. Interfaces, 2018, 10(27): 22939.
[56]
Jia Y H, Zhang H B, Yang S B, Xi Z H, Tang T T, Yin R X, Zhang W J. Nanomedicine, 2018, 13(22): 2881.

URL     pmid: 30427768
[57]
Liu W, Xi G H, Yang X, Hao X, Wang M S, Feng Y K, Chen H, Shi C C. J. Mater. Chem. B, 2019, 7(32): 4997.

URL     pmid: 31411610
[58]
Lin J H, Wu Z H, Lu C T, Li T T, Lou C W. Appl. Mech. Mater., 2013, 365/366: 1177.
[59]
Tan M H, Zhang L, Zhu J X, Tian X M, Yang F W, Chen X M. N. Chem. Mater., 2017, 45(4): 248.
谭铭浩, 张良, 朱继翔, 田秀梅, 阳范文, 陈晓明. 化工新型材料, 2017, 45(4): 248.
[60]
Zahid S, Khalid H, Ikram F, Iqbal H, Samie M, Shahzadi L, Shah A T, Yar M, Chaudhry A A, Awan S J, Khan A F, Rehman I U. Mater. Sci. Eng.: C, 2019, 101: 438.
[61]
Aydogdu M O, Altun E, Ahmed J, Gunduz O, Edirisinghe M. Polymers, 2019, 11(7): 1148.
[62]
Zhang S, Li H L, Yuan M W, Yuan M L, Chen H Y. Int. J. Mol. Sci., 2017, 18(10): 2041.
[63]
Thangaraju E, Rajiv S, Natarajan T S. J. Polym. Res., 2015, 22(2): 24.
[64]
Li T T, Lou C W, Chen A P, Lee M C, Ho T F, Chen Y S, Lin J H. Materials, 2016, 9(9): 793.
[65]
Gomaa S F, Madkour T M, Moghannem S, El-Sherbiny I M. Int. J. Biol. Macromol., 2017, 105: 1148.

URL     pmid: 28751051
[66]
Liu Y W, Liang X, Zhang R, Lan W T, Qin W. Polymers, 2017, 9(12): 464.
[67]
Chen D P, Weng L S, Chen C, Zheng J, Wu T, Zeng S F, Zhang S Z, Xiao J M. J. Biomed. Mater. Res. Part A, 2019, 107(12): 2756.
[68]
Perumal G, Pappuru S, Chakraborty D, Maya Nandkumar A, Chand D K, Doble M. Mater. Sci. Eng.: C, 2017, 76: 1196.
[69]
Chen H R, Shen Y, Zhang H T, Deng K X, Xu Y L, Dai X L, Li Y S, Zhang X Q, Xu T. Chin. J. Tissue Eng. Res., 2019, 23(26): 4217.
陈洪让, 沈云, 张海涛, 邓坤学, 徐元玲, 代兴亮, 李永生, 章新琼, 徐弢. 中国组织工程研究, 2019, 23(26): 4217.
[70]
Xi Y W, Ge J, Wang M, Chen M, Niu W, Cheng W, Xue Y M, Lin C, Lei B. ACS Nano, 2020, 14(3): 2904.

URL     pmid: 32031782
[71]
Spasova M, Manolova N, Paneva D, Mincheva R, Dubois P, Rashkov I, Maximova V, Danchev D. Biomacromolecules, 2010, 11(1): 151.

URL     pmid: 19947641
[72]
Wang Z Y, Lin J Y, Luo S H, Yang L T. CN201910608415X, 2019.
( 汪朝阳, 林建云, 罗时荷, 杨丽庭. . CN201910608415X, 2019.).
[73]
Zhou M J, Wang S H, Jia Q X, Teng X B. Polym. Mater. Sci. Eng., 2019, 35(3): 53.
周孟娇, 王双红, 贾清秀, 滕晓波. 高分子材料科学与工程, 2019, 35(3): 53.
[74]
Namboodiri M M T, Pakshirajan K. J. Environ. Manag., 2019, 240: 431.
[75]
di Nardo T, Hadad C, van Nhien A N, Moores A. Green Chem., 2019, 21(12): 3276.
[76]
Kumar S, Ye F, Dobretsov S, Dutta J. Appl. Sci., 2019, 9(12): 2409.
[77]
de Farias B S, Sant'Anna Cadaval T R Jr, de Almeida Pinto L A. Int. J. Biol. Macromol., 2019, 123: 210.

URL     pmid: 30419330
[78]
Khan M A, Mujahid M. Int. J. Biol. Macromol., 2019, 124: 138.

doi: 10.1016/j.ijbiomac.2018.11.045     URL     pmid: 30447365
[79]
Huang H, Liu H H, Zhou H, Liang Z L, Song D D, Zhang Y, Huang W Q, Zhao X T, Wu B, Ye G D, Huang Y G. Drug Des. Dev. Ther., 2019, 13: 881.
[80]
Abacıoglu S, Aydin K, Büyükcam F, Kaya U, Isik B, Karakilic M E. Turkish J. Hematol., 2016, 33(1): 48.
[81]
Li Y Q, Wen H Q, Ma J H, Wang J, An Y Q, Tan C J. Chin. Herb. Med., 2019, 50(5): 1141.
李雨秋, 温华强, 马家骅, 王静, 安雨琪, 谭承佳. 中草药, 2019, 50(5): 1141.
[82]
Hu Z, Lu S T, Cheng Y, Kong S Z, Li S D, Li C P, Yang L. Molecules, 2018, 23(12): 3147.
[83]
Li X, Wang S Y, Ding X, Zhang D J, He X X. J. Chang. Univ. Sci. Technol. Nat. Sci. Ed., 2019, 42(4): 120.
历雪, 王思颖, 丁雪, 张冬娇, 何秀霞. 长春理工大学学报(自然科学版), 2019, 42(4): 120.
[84]
Dowling M B, Smith W, Balogh P, Duggan M J, MacIntire I C, Harris E, Mesar T, Raghavan S R, King D R. J. Surg. Res., 2015, 193(1): 316.

URL     pmid: 25016441
[85]
Chen J W, Ai J, Chen S N, Xu Z Y, Lin J H, Liu H Q, Chen Q H. Int. J. Biol. Macromol., 2019, 139: 1203.

URL     pmid: 31415855
[86]
Ryu J H, Lee Y, Kong W H, Kim T G, Park T G, Lee H. Biomacromolecules, 2011, 12(7): 2653.

URL     pmid: 21599012
[87]
Park E, Lee J, Huh K M, Lee S H, Lee H. Adv. Healthcare Mater., 2019, 8(14): 1900275.
[88]
Li X Y, Li Y C, Chen M J, Shi Q S, Sun R C, Wang X Y. J. Mater. Chem. B, 2018, 6(41): 6544.

URL     pmid: 32254862
[89]
Du X C, Liu Y J, Wang X, Yan H Y, Wang L N, Qu L J, Kong D L, Qiao M Q, Wang L Y. Mater. Sci. Eng.: C, 2019, 104: 109930.
[90]
Leonhardt E E, Kang N R, Hamad M A, Wooley K L, Elsabahy M. Nat. Commun., 2019, 10: 2307.

doi: 10.1038/s41467-019-10290-1     URL     pmid: 31127114
[91]
Zhao Y F, Zhao J Y, Hu W Z, Ma K, Chao Y, Sun P J, Fu X B, Zhang H. J. Mater. Chem. B, 2019, 7(11): 1855.

URL     pmid: 32255048
[92]
Shyna S, Shanti Krishna A, Nair P D, Thomas L V. Int. J. Biol. Macromol., 2020, 150: 129.

URL     pmid: 32007547
[93]
Sasmal P, Datta P. J. Drug Deliv. Sci. Technol., 2019, 52: 559.
[94]
Chen Q C, Liu Y, Wang T, Wu J, Zhai X Y, Li Y Q, Lu W W, Pan H B, Zhao X L. J. Mater. Chem. B, 2017, 5(20): 3686.

URL     pmid: 32264057
[95]
Yao X P, Jing M L, Guan J. Chin. J. Tissue Eng. Res., 2017, 21(6): 906.
姚心培, 荆妙蕾, 关静. 中国组织工程研究, 2017, 21(6): 906.
[96]
Hoseinpour N M, Minaiyan M, Taheri A. J. Biomater. Appl., 2018, 32(6): 689.

URL     pmid: 29119880
[97]
Ouyang Q Q, Hou T T, Li C P, Hu Z, Liang L M, Li S D, Zhong Q K, Li P W. Int. J. Biol. Macromol., 2019, 139: 719.

URL     pmid: 31356953
[98]
Han D D, He Z, Zhong R, Zhang X J, Wang H. Chin. J. Biotechnol., 2020, 36(2): 332.
韩玎玎, 贺曾, 钟锐, 张学俊, 王红. 生物工程学报, 2020, 36(2): 332.
[99]
Liu S P, Zheng Z Q, Wang S, Chen S J, Ma J W, Liu G S, Wang B, Li J W. Carbohydr. Polym., 2019, 224: 115175.

URL     pmid: 31472827
[100]
Zhao X, Guo B L, Wu H, Liang Y P, Ma P X. Nat. Commun., 2018, 9: 2784.

URL     pmid: 30018305
[101]
Yuk H, Varela C E, Nabzdyk C S, Mao X Y, Padera R F, Roche E T, Zhao X H. Nature, 2019, 575(7781): 169.

URL     pmid: 31666696
[102]
Yang Q, Lei S L. Indian J. Hematol. Blood Transfus., 2015, 31(4): 434.

URL     pmid: 26306067
[103]
Li J M, Zong J, Li N, Zhang J L, Chen W, Jiang D W, Ge W H, Shen X R. Chin. J. Mar. Drug., 2016, 35(1): 69.
李佳媚, 宗杰, 李娜, 张俊玲, 陈伟, 蒋定文, 葛卫红, 沈先荣. 中国海洋药物, 2016, 35(1): 69.
[104]
Xu G Z, Cheng L, Zhang Q T, Sun Y L, Chen C L, Xu H, Chai Y M, Lang M D. J. Biomater. Appl., 2016, 31(5): 721.

URL     pmid: 27485953
[105]
Huang D X, Lin C, Wen X J, Gu S Y, Zhao P. PLoS One, 2016, 11(8): 0161435.
[106]
Cheng F, Liu C Y, Wei X J, Yan T S, Li H B, He J M, Huang Y D. ACS Sustainable Chem. Eng., 2017, 5(5): 3819.
[107]
Catanzano O, D’Esposito V, Formisano P, Boateng J S, Quaglia F. J. Pharm. Sci., 2018, 107(2): 654.

URL     pmid: 28987501
[108]
Tong Z R, Chen Y, Liu Y, Tong L, Chu J M, Xiao K C, Zhou Z Y, Dong W B, Chu X W. Mar. Drugs, 2017, 15(4): 91.
[109]
Shi X Y, Fang Q, Ding M, Wu J, Ye F, Lv Z, Jin J. J. Biomater. Appl., 2016, 30(7): 1092.

URL     pmid: 26611230
[110]
Jin J, Ji Z X, Xu M, Liu C Y, Ye X Q, Zhang W Y, Li S, Wang D, Zhang W P, Chen J Q, Ye F, Lv Z. ACS Biomater. Sci. Eng., 2018, 4(7): 2541.

URL     pmid: 33435117
[111]
Huang H, Chen H S, Wang X L, Qiu F X, Liu H H, Lu J W, Tong L, Yang Y M, Wang X S, Wu H. ACS Biomater. Sci. Eng., 2019, 5(10): 5498.

URL     pmid: 33464069
[112]
Zare-Gachi M, Daemi H, Mohammadi J, Baei P, Bazgir F, Hosseini-Salekdeh S, Baharvand H. Mater. Sci. Eng.: C, 2020, 107: 110321.
[113]
Sun X Q, Ma C, Gong W L, Ma Y N, Ding Y H, Liu L. Int. J. Biol. Macromol., 2020, 157: 522.

URL     pmid: 32353503
[114]
Neuman M G, Nanau R M, Oruña-Sanchez L, Coto G. J. Pharm. Pharm. Sci., 2015, 18(1): 53.

URL     pmid: 25877441
[115]
Petrey A C, de la Motte C A. Matrix Biol., 2019,78-79: 314.

doi: 10.1016/j.matbio.2015.06.001     URL     pmid: 26049074
[116]
Wang Z B, Qian Y N, Li L H, Pan L H, Njunge L W, Dong L L, Yang L. J. Biomater. Appl., 2016, 30(6): 686.

URL     pmid: 26012354
[117]
Li X J, Li A M, Feng F, Jiang Q Y, Sun H W, Chai Y T, Yang R C, Wang Z J, Hou J, Li R S. Animal Model. Exp. Med., 2019, 2(2): 107.

URL     pmid: 31392303
[118]
Zhu J, Li F X, Wang X L, Yu J Y, Wu D Q. ACS Appl. Mater. Interfaces, 2018, 10(16): 13304.

URL     pmid: 29607644
[119]
Li H Y, Xue Y H, Jia B, Bai Y, Zuo Y Y, Wang S G, Zhao Y Y, Yang W Z, Tang H B. Carbohydr. Polym., 2018, 188: 92.

URL     pmid: 29525177
[120]
Luo J W, Liu C, Wu J H, Zhao D H, Lin L X, Fan H M, Sun Y L. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2020, 108(3): 790.
[121]
Yu X F, Liu Z H, Janzen J, Chafeeva I, Horte S, Chen W, Kainthan R K, Kizhakkedathu J N, Brooks D E. Nat. Mater., 2012, 11(5): 468.

URL     pmid: 22426460
[122]
Xia J, Zhang H, Yu F Q, Pei Y, Luo X G. ACS Appl. Mater. Interfaces, 2020, 12(21): 24370.

URL     pmid: 32368896
[123]
Cui Z H, Zhang Y F, Tian T, Dong X H, Jia Q Z, Zhang L S. J. Hebei Med. Univ., 2019, 40(10): 1193.
崔智慧, 张雅菲, 田田, 董晓辉, 贾庆忠, 张连珊. 河北医科大学学报, 2019, 40(10): 1193.
[124]
Aydemir S U, Kocer Z, Sahin I, Aru B, Yanıkkaya D G, Sezer S. Carbohydr. Polym., 2018, 200: 624.

doi: 10.1016/j.carbpol.2018.07.074     URL     pmid: 30177208
[125]
Chen X T, Li S Y, Xiong Y, Yan Y G. Polym. Mater. Sci. Eng., 2020, 36(6): 118.
陈星陶, 李漱阳, 熊熠, 严永刚. 高分子材料科学与工程, 2020, 6: 118.
[126]
Litvinov R I, Weisel J W. Matrix Biol., 2017, 60/61: 110.
[127]
Nenezić D, Ayguasanosa J, Menyhei G, Tamás H, Mátyás L, Muluk S, Courtney K, Ibáñez J, Chen J L, Segura-Vasi A, Sokurenko G, Paramesh A, Minkowitz H, Sonkin I, Lal B, Ihnat D, Brooke B, Popović V, Eslami M, Farber A, Saha S B, Greenstein S, Karpenko A, Katelnitskiy I, Tran N, Hoch J, Amin A L, White P, Rajani R R, Griffin J, Yurvati A, Matsuura J, Navarro-Puerto J, Barrera G, Hames C, Lloyd V, Zhang Y M, Lin J, Li H, Covington D, Henriquez W, Soucheiron C, Beck S, Casamiquela R. J. Vasc. Surg., 2019, 70(5): 1642.

URL     pmid: 30926276
[128]
MiyabashiraTanaka S, Imamura T, Fujimoto M, Ohno A, Kobayashi T, Shinya N. J. Investig. Surg., 2019, 32(3): 257.
[129]
Chen J Y, Gao X L, Tan J Y. J. Xihua Univ.(Natl. Sci. Ed.), 2018, 37(4): 74.
陈俊英, 高霞丽, 谭建英. 西华大学学报(自然科学版), 2018, 37(4): 74.
[130]
Lamm R J, Lim E B, Weigandt K M, Pozzo L D, White N J, Pun S H. Biomaterials, 2017, 132: 96.

URL     pmid: 28411452
[131]
Campos-Cuerva R, Fernández-Muñoz B, Farfán LÓpez F, Pereira Arenas S, Santos-González M, Lopez-Navas L, Alaminos M, Campos A, MuntanÉ J, Cepeda-Franco C, GÓmez-Bravo M Á. J. Tissue Eng. Regen. Med., 2019, 13(4): 664.

doi: 10.1002/term.2831     URL     pmid: 30793853
[132]
Sundaram M N, Krishnamoorthi Kaliannagounder V, Selvaprithiviraj V, Suresh M K, Biswas R, Vasudevan A K, Varma P K, Jayakumar R. ACS Sustainable Chem. Eng., 2018, 6(6): 7826.
[133]
Bai S, Hou D Y, Shen X R, He Y, Chen W, Hu X T, Gao C L, Yuan W H. Chin. J. Mar. Drug., 2019, 38(2): 1.
白爽, 侯登勇, 沈先荣, 何颖, 陈伟, 胡秀婷, 高春丽, 原维鸿. 中国海洋药物. 2019, 38(2): 1.
[134]
Abdel-Mohsen A M, Frankova J, Abdel-Rahman R M, Salem A A, Sahffie N M, Kubena I, Jancar J. Int. J. Pharm., 2020, 582: 119349.

URL     pmid: 32315748
[135]
Liu H, Wang Y K, Hou H, Li B F. Chin. J. Mar. Drug., 2018, 37(4): 45.
刘晗, 王月坤, 侯虎, 李八方. 中国海洋药物, 2018, 37(4): 45.
[136]
Sun L L, Li B F, Song W K, Zhang K, Fan Y, Hou H. Mater. Sci. Eng. C, 2020, 109: 11053.
[137]
Shivalingu B R, Vivek H K, Priya B S, Soujanya K N, Swamy S N. Phytomedicine, 2016, 23(13): 1691.

doi: 10.1016/j.phymed.2016.09.007     URL     pmid: 27823634
[138]
Uday P, Maheshwari M, Sharanappa P, Nafeesa Z, Kameshwar V H, Priya B S, Nanjunda Swamy S. J. Ethnopharmacol., 2017, 199: 316.

doi: 10.1016/j.jep.2016.12.047     URL     pmid: 28057488
[139]
Li W F, Gao F Y, Kan J L, Deng J, Wang B C, Hao S L. Colloids Surfaces B: Biointerfaces, 2019, 175: 436.

URL     pmid: 30562718
[140]
Wei Q C, Xu W, Liu M Y, Wu Q, Cheng L M, Wang Q G. J. Mater. Chem. B, 2016, 4(38): 6302.

URL     pmid: 32263531
[141]
Lu D D, Wang H S, Li tinge, Li Y F, Dou F J, Sun S B, Guo H Y, Liao S Q, Yang Z W, Wei Q B, Lei Z Q. ACS Appl. Mater. Interfaces, 2017, 9(20): 16756.

URL     pmid: 28472883
[142]
Baker C J, Smith S A, Morrissey J H. Res. Pract. Thromb. Haemost., 2019, 3(1): 18.

URL     pmid: 30656272
[143]
Mutch N J. Blood, 2019, 134(Supplement_1): SCI-18.
[144]
Verhoef J J F, Barendrecht A D, Nickel K F, Dijkxhoorn K, Kenne E, Labberton L, McCarty O J T, Schiffelers R, Heijnen H F, Hendrickx A P, Schellekens H, Fens M H, de Maat S, RennÉ T, Maas C. Blood, 2017, 129(12): 1707.

URL     pmid: 28049643
[145]
Gajsiewicz J M, Smith S A, Morrissey J H. J. Biol. Chem., 2017, 292(5): 1808.

URL     pmid: 28007958
[146]
Momeni A, Filiaggi M J. Acta Biomater., 2016, 41: 328.

URL     pmid: 27265150
[147]
Jhiang J S, Wu T H, Chou C J, Chang Y, Huang C J. J. Mater. Chem. B, 2019, 7(17): 2878.

doi: 10.1039/c8tb03367f     URL     pmid: 32255090
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[3] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[4] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[5] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[6] 丁跃, 卢波, 季君晖. 聚乳酸基生物可降解材料的相容性[J]. 化学进展, 2020, 32(6): 738-751.
[7] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[8] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[9] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[10] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[11] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[12] 马晓川, 费浩. 金属配位在多肽与蛋白质研究中的应用[J]. 化学进展, 2016, 28(2/3): 184-192.
[13] 王见伟, 宋利锋, 赵瑾, 原续波. 基于多肽结构的聚合物水凝胶[J]. 化学进展, 2015, 27(4): 373-384.
[14] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[15] 梁妍钰, 唐姗, 郑基深. 细胞穿透环肽[J]. 化学进展, 2014, 26(11): 1793-1800.