English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 127-136 DOI: 10.7536/PC160807 前一篇   后一篇

• 综述 •

聚合物Janus微粒材料的制备与应用

翟文中, 何玉凤*, 王斌, 熊玉兵, 宋鹏飞, 王荣民*   

  1. 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 兰州 730070
  • 收稿日期:2016-08-01 修回日期:2016-11-01 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 何玉凤, 王荣民 E-mail:heyuefeng@nwnu.edu.cn;wangrm@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21364012,21263024)资助

Fabrication and Applications of Polymeric Janus Particles

Wenzhong Zhai, Yufeng He*, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang*   

  1. Key Lab. Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2016-08-01 Revised:2016-11-01 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21364012, 21263024).
聚合物Janus微粒是指具有各向异性微观结构的微/纳米聚合物粒子。因在乳液稳定、聚合物混合、可控组装、生物医药、多相催化和功能涂层等领域有重要的应用价值,聚合物Janus微粒材料的可控制备和应用研究已成为新型多功能和智能高分子材料研究的前沿领域。本文首先归纳了聚合物Janus微粒在制备方法、环境响应类型和应用领域的最新进展,进而分析了不同制备方法的优缺点。表面选择性修饰、微流体合成技术、自组装和种子聚合等方法都可用于制备具有可控尺寸、微观结构和表面性质的聚合物Janus微粒,但纳米级微粒微观结构的精确控制和大量合成还存在一定的挑战。环境响应性多组分聚合物Janus微粒在自组装和药物控释方面有其特殊的优势,而简单高效的种子聚合法有望应用于工业生产聚合物Janus固体表面活性剂。预计天然和多功能型聚合物Janus微粒的制备和应用研究将会是未来发展的趋势。
Polymeric Janus micro/nano-particles, which have anisotropic microstructures, can be widely applied in many fields, such as stabilizing emulsions, polymer mixing, controllable self-assembly, bio-medicines, heterogeneous catalysis and functional coatings. Therefore, the research on controlled fabrication and applications of polymeric Janus particles has been paid active attention in region of multifunctional and smart polymer materials. In this review, the progress of polymeric Janus particles in the past few years, such as synthetic strategies, stimulative responsibilities and applications, has been summarized. Their advantages and disadvantages have also been briefly discussed. The polymeric Janus particles with controllable sizes, microstructures and surface properties can be prepared via selective surface modifications, microfluidic synthesis, self-assembly, seed polymerization and other preparation strategies. However, the accurate fabrication and high yield of the particles in nanoscale are still a challenge. Stimulative responsibilities of polymeric Janus particles include pH-responsive property, temperature-responsive property, ion-responsive property, light-responsive property and other stimuli-responsive properties. Stimuli-responsive polymeric Janus particles possessing multicomponent structure have their special advantages in self-assembly and drug delivery. Seed polymerization as a simple and efficient strategy can be applied to prepare polymeric Janus surfactants in industrial production. The fabrication and applications of natural and multifunctional polymeric Janus particles are predicted finally as the development trends in the future.

Contents
1 Introduction
2 Synthesis strategies
2.1 Selective surface modifications
2.2 Microfluidic synthesis
2.3 Self-assembly
2.4 Seed polymerization
2.5 Other preparation strategies
2.6 Macromolecular Janus particles
3 Stimulative responsibilities
3.1 pH-responsive property
3.2 Temperature-responsive property
3.3 Ion-responsive property
3.4 Light-responsive property
3.5 Other stimuli-responsive properties
4 Applications
4.1 Solid surfactants
4.2 Building blocks
4.3 Bio-medicines
4.4 Janus films
4.5 Other applications
5 Conclusion

中图分类号: 

()
[1] de Gennes P G. Angew. Chem. Int. Ed., 1992, 31:842.
[2] Walther A, Müller A H E. Chem. Rev., 2013, 113:5194.
[3] Lattuada M, Hatton T A. Nano Today, 2011, 6:286.
[4] Cole-Hamilton D J. Science, 2010, 327:41.
[5] Schick I, Lorenz S, Gehrig D, Schilmann A M, Bauer H, Panthöfer M, Fischer K, Strand D, Laquai F, Tremel W. J. Am. Chem. Soc., 2014, 136:2473.
[6] Cox L M, Killgore J P, Li Z, Zhang Z, Hurley D C, Xiao J, Ding Y. Adv. Mater., 2014, 26:899.
[7] Lee K J, Yoon J, Lahann J. Curr. Opin. Colloid. In., 2011, 16:195.
[8] 周鹏(Zhou P),刘宝(Liu B),梁福鑫(Liang F X),王倩(Wang Q),屈小中(Qu X Z),杨振忠(Yang Z Z). 高等学校化学学报(Chemical Journal of Chinese Universities), 2015, 36:1431.
[9] Liang F, Zhang C, Yang Z. Adv. Mater., 2014, 26:6944.
[10] Percec V, Wilson D A, Leowanawat P, Wilson C J, Hughes A D, Kaucher M S, Hammer D A, Levine D H, Kim A J, Bates F S, Davis K P, Lodge T P, Klein M L, DeVane R H, Aqad E, Rosen B M, Argintaru A O, Sienkowska M J, Rissanen K, Nummelin S, Ropponen J. Science, 2010, 328:1009.
[11] Dupont J, Liu G. Soft Matter, 2010, 6:3654.
[12] Wang T, Chen S R, Jin F, Cai J H, Cui L Y, Zheng Y M, Wang J X, Song Y L, Jiang L. Chem. Commun., 2015, 51:1367.
[13] Ghoussoub Y E, Schlenoff J B. Langmuir, 2016, 32:3623.
[14] Tang C, Zhang C, Sun Y, Liang F, Wang Q, Li J, Qu X, Yang Z. Macromolecules, 2013, 46:188.
[15] Deng R, Liu S, Liang F, Wang K, Zhu J, Yang Z. Macromolecules, 2014, 47:3701.
[16] Zhao H, Liang F, Qu X, Wang Q, Yang Z. Macromolecules, 2015, 48:700.
[17] Yang H, Liang F, Chen Y, Wang Q, Qu X, Yang Z. NPG Asia Mater., 2015, 7:e176.
[18] Hu J, Zhou S, Sun Y, Fang X, Wu L. Chem. Soc. Rev., 2012, 41:4356.
[19] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interfaces, 2013, 5:1857.
[20] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissaa M, Elaissari A. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 439:35.
[21] 陈云华(Chen Y H),王朝阳(Wang C Y),李煜(Li Y),童真(Tong Z). 化学进展(Progress in Chemistry), 2009, 21:615.
[22] 刘善芹(Liu S Q),张毅军(Zhang Y J),邓仁华(Deng R H),梅路平(Mei L P). 科技导报(Science & Technology Review), 2016, 34:27.
[23] Nisisako T. Curr. Opin. Colloid. In., 2016, 25:1.
[24] 杨轶(Yang Y),叶伟(Ye W),陈晓(Chen X). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28:2525.
[25] Cho I, Lee K W J. Appl. Polym. Sci., 1985, 30:1903.
[26] Yabu H, Kanahara M, Shimomura M, Arita T, Harano K, Nakamura E, Higuchi T, Jinnai H. ACS Appl. Mater. Interfaces, 2013, 5:3262.
[27] Urban M, Freisinger B, Ghazy O, Staff R, Landfester K, Crespy D, Musyanovych A. Macromolecules, 2014, 47:7194.
[28] Weiss S, Hirsemann D, Biersack B, Ziadeh M, Müller A H E, Breu J. Polymer, 2013, 54:1388.
[29] Perro A, Reculusa S, Ravaine S, Bourgeat-Lamic E, Duguet E. J. Mater. Chem., 2005, 15:3745.
[30] Zhang J T, Chao X, Asher S A. J. Am. Chem. Soc., 2013, 135:11397.
[31] Poggi E, Bourgeois J P, Ernould B, Gohy J F. RSC Adv., 2015, 5:44218.
[32] Seidel P, Ravoo B J. Macromol. Chem. Phys., 2016, 217:1467.
[33] Yamagami T, Kitayama Y, Okubo M. Langmuir, 2014, 30:7823.
[34] Liu J, Liu G, Zhang M, Sun P, Zhao H. Macromolecules, 2013, 46:5974.
[35] Huang C, Shen X. Chem. Commun., 2014, 50:2646.
[36] Suzuki D, Tsuji S, Kawaguchi H. J. Am. Chem. Soc., 2007, 129:8088.
[37] Wu H, Yi W, Chen Z, Wang H, Du Q. Carbon, 2015, 93:473.
[38] Sokolovskaya E, Rahmani S, Misra A C, Bräse S, Lahann J. ACS Appl. Mater. Interfaces, 2015, 7:9744.
[39] Choi C H, Weitz D A, Lee C S. Adv. Mater., 2013, 25:2536.
[40] Cao X, Li W, Ma T, Dong H. RSC Adv., 2015, 5:79969.
[41] Sun X, Liu M, Xu Z. Talanta, 2014, 121:163.
[42] Hu Y, Wang S, Abbaspourrad A, Ardekani A M. Langmuir, 2015, 31:1885.
[43] Maeda K, Onoe H, Takinoue M, Takeuchi S. Adv. Mater., 2012, 24:1340.
[44] Hu Y, Wang J, Li C, Wang Q, Wang H, Zhu J, Yang Y. Langmuir, 2013, 29:15529.
[45] Yoon J, Kota A, Bhaskar S, Tuteja A, Lahann J. ACS Appl. Mater. Interfaces, 2013, 5:11281.
[46] Misra A C, Luker K E, Durmaz H, Luker G D, Lahann J. Biomacromolecules, 2015, 16:2412.
[47] Yoon J, Eyster T W, Misra A C, Lahann J. Adv. Mater., 2015, 27:4509.
[48] Jin Z, Fan H. Soft Matter, 2014, 10:9212.
[49] Gröschel A H, Müller A H E. Nanoscale, 2015, 7:11841.
[50] Erhardt R, Böker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller A H E. Macromolecules, 2001, 34:1069.
[51] Walther A, Müller A H E. Soft Matter, 2008, 4:663.
[52] Gröschel A H, Schacher F H, Schmalz H, Borisov O V, Zhulina E B, Walther A, Müller A H E. Nat. Commun., 2012, 3:710.
[53] Gröschel A H, Walther A, Löbling T I, Schacher F H, Schmalz H, Müller A H E. Nature, 2013, 503:247.
[54] Hiekkataipale P, Löbling T I, Poutanen M, Priimagi A, Abetz V, Ikkala O, Gröschel A H. Polymer, 2016, DOI:10.1016/j.polymer.2016.05.076.
[55] Deng R H, Liang F X, Zhou P, Zhang C L, Qu X Z, Wang Q, Zhu J T, Yang Z. Adv. Mater., 2014, 26:4469.
[56] Tran N, Mulet X, Hawley A M, Conn C E, Zhai J, Waddington L J, Drummond C J. Nano Lett., 2015, 15:4229.
[57] Skelhon T S, Chen Y, Bon S A F. Langmuir, 2014, 30:13525.
[58] Mock E B, Zukoski C F. Langmuir, 2010, 26:13747.
[59] Lu C, Urban M W. ACS Macro Lett., 2014, 3:346.
[60] Cheng Z, Luo F, Zhang Z, Ma Y Q. Soft Matter, 2013, 9:11392.
[61] Li B, Wang M, Chen K, Cheng Z, Chen G, Zhang Z. Macromol. Rapid. Comm., 2015, 36:1200.
[62] Li C, Wu Z M, He Y F, Song P F, Zhai W Z, Wang R M. J. Colloid Interf. Sci., 2014, 426:39.
[63] Zhai W Z, Li T, He Y F, Xiong Y B, Wang R M. RSC Adv., 2015, 5:76211.
[64] Zhai W Z, Wang B, Wang Y S, He Y F, Song P F, Wang R M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2016, 503:94.
[65] Choi C H, Kang S M, Jin S H, Yi H, Lee C S. Langmuir, 2015, 31:1328.
[66] Onishi S, Tokuda M, Suzuki T, Minami H. Langmuir, 2015, 31:674.
[67] Qi H, Wang W, Li C Y. ACS Macro Lett., 2014, 3:675.
[68] Wang L, Liu Y, He J, Hourwitz M J, Yang Y, Fourkas J T, Han X, Nie Z. Small, 2015, 11:3762.
[69] Babajani N, Kaulen C, Homberger M, Mennicken M, Waser R, Simon U, Karthäuser S. J. Phys. Chem. C, 2014, 118:27142.
[70] Huang X, Qian Q, Wang Y. Small, 2014, 10:1412.
[71] Xu Y, Wang L, Zhu X, Wang C Q. RSC Adv., 2016, 6:31053.
[72] Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. J. Am. Chem. Soc., 2013, 135:4765.
[73] Chen S Q, He C, Li H J, Li P Y, He W D. Polym. Chem., 2016, 7:2476.
[74] Yamashita N, Konishi N, Tanaka T, Okubo M. Langmuir, 2012, 28:12886.
[75] Synytska A, Ionov L. Part. Part. Syst. Charact., 2013, 30:922.
[76] Qi H, Zhou T, Mei S, Chen X, Li C Y. Macromolecules, 2015, 48:7256.
[77] Tu F, Lee D. J. Am. Chem. Soc., 2014, 136:9999.
[78] Zhao Z, Zhu F, Qu X, Wu Q, Wang Q, Zhang G, Liang F. Polym. Chem., 2015, 6:4144.
[79] Hashimoto C, Nagamoto A, Maruyama T, Kariyama N, Irisa Y, Ikehata A, Ozaki Y. Macromolecules, 2013, 46:1041.
[80] Besnard L, Marchal F, Paredes J F, Daillant J, Pantoustier N, Perrin P, Guenoun P. Adv. Mater., 2013, 25:2844.
[81] Yang L, Guo Y, Lei Z. J. Mater. Chem. A, 2015, 3:17098.
[82] Ge Z, Xu J, Hu J, Zhang Y, Liu S. Soft Matter, 2009, 5:3932.
[83] Chen Q, Whitmer J K, Jiang S, Bae S C, Luijten E, Granick S. Science, 2011, 331:199.
[84] Ji X, Zhang Q, Liang F, Chen Q, Qu X, Zhang C, Wang Q, Li J, Song X, Yang Z. Chem. Commun., 2014, 50:5706.
[85] Cao Z, Wang G, Chen Y, Liang F, Yang Z. Macromolecules, 2015, 48:7256.
[86] Zhou X, Du Y, Wang X. ACS Macro Lett., 2016, 5:234.
[87] Nisisako B T, Torii T, Takahashi T, Takizawa Y. Adv. Mater., 2006, 18:1152.
[88] Dong J, Zhou J. Macromol. Theory Simul., 2013, 22:174.
[89] Mitragotri S, Lahann J. Nat. Mater., 2009, 8:15.
[90] Lenis J, Razavi S, Cao K D, Lin B, Lee K Y C, Tu R S, Kretzschmar I. J. Am. Chem. Soc., 2015, 137:15370.
[91] Walther A, Matussek K, Müller A H E. ACS Nano, 2008, 2:1167.
[92] Ruhland T M, Gröschel A H, Ballard N, Skelhon T S, Walther A, Müller A H E, Bon S A F. Langmuir, 2013, 29:1388.
[93] Kumar A, Park B J, Tu F, Lee D. Soft Matter, 2013, 9:6604.
[94] Isa L, Samudrala N, Dufresne E R. Langmuir, 2014, 30:5057.
[95] Tanaka T, Okayama M, Minami H, Okubo M. Langmuir, 2010, 26:11732.
[96] Gröschel A H, Löbling T I, Petrov P D, Müllner M, Kuttner C, Wieberger F, Müller A H E. Angew. Chem. Int. Ed., 2013, 52:3602.
[97] Walther A, Hoffmann M, Müller A H E. Angew. Chem. Int. Ed., 2008, 47:711.
[98] Pham B T T, Such C H, Hawkett B S. Polym. Chem., 2015, 6:426.
[99] Moghani M M, Khomami B. Soft Matter, 2013, 9:4815.
[100] Skelhon T S, Chen Y, Bon S A F. Soft Matter, 2014, 10:7730.
[101] Bianchi E, Panagiotopoulos A Z, Nikoubashman A. Soft Matter, 2015, 11:3767.
[102] Khan I U, Serra C A, Anton N, Li X, Akasov R, Messaddeq N, Kraus I, Vandamme T F. Int. J. Pharm., 2014, 473:239.
[103] Yoshida M, Roh K H, Lahann J. Biomaterials, 2007, 28:2446.
[104] Rahmani S, Ross A M, Park T H, Durmaz H, Dishman A F, Prieskorn D M, Jones N, Altschuler R A, Lahann J. Adv. Healthcare Mater., 2016, 5:94.
[105] Chen B, Jia Y, Gao Y, Sanchez L, Anthony S M, Yu Y. ACS Appl. Mater. Interfaces, 2014, 6:18435.
[106] Han D, Xiao P, Gu J, Chen J, Cai Z, Zhang J, Wang W, Chen T. RSC Adv., 2014, 4:22759.
[107] Gu J, Xiao P, Chen J, Zhang J, Huang Y, Chen T. ACS Appl. Mater. Interfaces, 2014, 6:16204.
[108] Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. ACS Appl. Mater. Interfaces, 2015, 7:21218.
[109] Yi F, Xu F, Gao Y, Li H, Chen D. RSC Adv., 2015, 5:40227.
[110] Lv D, Ni W, Liang F, Wang Q, Qu X, Yang Z. Chinese J. Polym. Sci., 2015, 33:1344.
[111] Zhao L, Zhu L, Chen Y, Wang Q, Li J, Zhang C, Liang F, Qu X, Yang Z. Chem. Commun., 2013, 49:6161.
[1] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[2] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[3] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
[4] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[9] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[10] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[11] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[12] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.
[13] 张浩, 许芳, 王合营, 姜涛, 马志. 基于聚亚甲基的新型共聚物的可控合成[J]. 化学进展, 2018, 30(2/3): 179-189.
[14] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[15] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.