English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1121-1130 DOI: 10.7536/PC160340 前一篇   后一篇

• 综述与评论 •

基于胆汁酸的刺激响应聚合物

刘森阳1, 彭了1, 袁金颖1*, 朱晓夏2   

  1. 1. 清华大学化学系有机光电子与分子工程教育部重点实验室 北京 100084;
    2. 蒙特利尔大学化学系 蒙特利尔 H3C 3J7 加拿大
  • 收稿日期:2016-03-01 修回日期:2016-05-01 出版日期:2016-08-15 发布日期:2016-07-12
  • 通讯作者: 袁金颖 E-mail:yuanjy@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21374053)资助

Stimuli Responsive Polymers Based on Bile Acids

Liu Senyang1, Peng Liao1, Yuan Jinying1*, Zhu Xiaoxia2   

  1. 1. Key Lab of Organic Optoelectronic & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. Department of Chemistry, University of Montreal, Montreal H3C 3J7, Canada
  • Received:2016-03-01 Revised:2016-05-01 Online:2016-08-15 Published:2016-07-12
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21374053)
刺激响应聚合物是当今材料科学研究的热点之一。其在外界刺激下,自身的物理或者化学性质发生变化产生响应,在药物可控释放、生物传感器、催化、吸附分离等方面有广阔的应用。胆汁酸是天然的甾类生物分子,其分子结构中含有羟基和羧基等官能团,容易进行化学修饰,且具有双亲性和一定的刚性。在聚合物中引入胆汁酸分子,能够从结构和功能两个方面丰富刺激响应高分子的研究。一方面,胆汁酸及修饰的胆汁酸既可以作为单体直接聚合,也可以被连接到含有一定官能团的聚合物上,由此可以得到以胆汁酸作为主链、侧基、端基,以及胆汁酸作为星形聚合物的核等多种聚合物结构。另一方面,胆汁酸的引入不仅可以提高聚合物的生物相容性,有效地赋予聚合物胆汁酸结构的独特性质,而且可以用于构建具有一定刺激响应功能的组装结构,进而应用于形状记忆、手性分离、药物载体等材料中。本文综述了基于胆汁酸的刺激响应聚合物近年来的相关工作,从基于胆汁酸的刺激响应聚合物的分子设计和结构构筑出发,结合其性质和应用进行论述,也对该领域的改进和发展提出展望。
The development of stimuli-responsive polymers has become an important research topic in material science. These polymers can respond to external stimuli, such as light, molecules, redox, pH, temperature and so on. They can undergo physical or chemical changes, for example, gel-sol transition and change of volume. Therefore, they can be widely applied in controlled drug release and biosensors. Bile acids are natural biological molecules in the steroid family bearing hydroxyl and carboxyl functional groups, which can be modified easily and they also have amphiphilic and rigid structure and excellent biocompatibility. The incorporation of bile acids can enrich the structures and functions of the stimuli responsive polymers. On one hand, bile acids or modified ones can either act as monomers for polymerization or be modified to functional groups in polymers. Therefore, different structures of polymers, with bile acids as the main chain, side groups, end groups and core of the star polymers, can be achieved. On the other hand, the introduction of bile acids can not only improve the biocompatibility of the materials, but also change the chemical property of polymers, thus broadening their functions in applications as shape memory materials, chiral separation and drug delivery systems. This paper reviews the recent related work, including the molecular design, structural construction and properties of these polymers. The prospect of future development of polymers containing bile acids is also discussed.

Contents
1 Introduction
2 Polymer containing bile acids on the main chain
2.1 Polyesters
2.2 1,2,3-Triazole-containing polymers
2.3 Polymer based on polycondensation of bile acids
3 Polymers with bile acid moieties as side groups
3.1 N-Isopropylacrylamide copolymers
3.2 Polycations
3.3 Norbornene-based polymers
3.4 Comb-like polymers
3.5 Copolymers for host-guest interactions
3.6 Self-assembly of bile acid-containing polymers
3.7 Oligomers
4 Polymers end-capped with bile acids
5 Star polymers with a bile acid core
6 Conclusion and outlook

中图分类号: 

()
[1] Debruyme P R,Bruyneel E A,Li X D.Mutation Res.,2001,481:359.
[2] Zhu X X,Nichifor M.Acc.Chem.Res.,2002,35:539.
[3] 胡祥正(Hu X Z),刘安军(Liu A J).化学进展(Progress in Chemistry),2009,21(6):1304.
[4] Jia Y G,Zhu X X.RSC Adv.,2016,6:23033.
[5] Mura S,Nicolas J,Couvreur P.Nat.Mater.,2013,12:991.
[6] Roy D,Cambre J N,Sumerlin B S.Prog.Polym.Sci.,2010,35:278.
[7] 闫强(Yan Q),袁金颖(Yuan J Y).高等学校化学学报(Chemical Journal of Chinese Universities),2012,33(9):1877.
[8] 彭了(Peng L),冯岸超(Feng A C),王宏(Wang H),张慧娟(Zhang H J),袁金颖(Yuan J Y).化学进展(Progress in Chemistry),2013,25(11):1942.
[9] Feng A C,Zhan C B,Yan Q,Liu B W,Yuan J Y.Chem.Commun.,2014,50:8958.
[10] Peng L,Feng A C,Zhang H J,Wang H,Jian C M,Liu B W,Gao W P,Yuan J Y.Polym.Chem.,2014,5:1751.
[11] Gautrot J E,Zhu X X.Angew.Chem.Int.Ed.,2006,45:6872.
[12] Gautrot J E,Zhu X X.Chem.Commun.,2008,14:1674.
[13] Kumar A,Chhatra R K,Pandey P S.Org.Lett.,2010,12:1.
[14] Ahlheim M,Hallensleben M L.Macromol.Chem.Rapid Commun.,1988,9:299.
[15] Noll O,Ritter H.Macromol.Rapid Commun.,1996,17:553.
[16] Zuluaga F,Valderruten N E,Wagener K B.Polym.Bull.,1999,42:41.
[17] Gouin S,Zhu X X.Steroids,1996,61:664.
[18] Liu H Y,Avoce D,Song Z J,Zhu X X.Macromol.Rapid Commun.,2001,22:675.
[19] Benrebouh A,Avoce D,Zhu X X.Polymer,2001,42:4031.
[20] Gu J X,Cheng W P,Liu J G,Lo S Y,Smith D,Qu X Z,Yang Z Z.Biomacromolecules,2008,9:255.
[21] Shao Y,Lavigueur C,Zhu X X.Macromolecules,2012,45:1924.
[22] Hao J Q,Li H,Zhu X X.Biomacromolecules,2006,7:995.
[23] Matsue T,Evans D H,Osa T,Kobayashi N.J.Am.Chem.Soc.,1985,107:3411.
[24] Tan Z J,Zhu X X,Brown G R.Langmuir,1994,10:1034.
[25] Jia Y G,Zhu X X.Langmuir,2014,30:11770.
[26] Zhang J,Ma P X.Adv.Drug Deliver.Rev.,2013,65:1215.
[27] Jia Y G,Zhu X X.Chem.Mater.,2015,27:387.
[28] Zhu L J,Zhao L L,Qu X Z,Yang Z Z.Langmuir,2012,28:11988.
[29] Shao Y,Jia Y G,Shi C Y,Luo J T,Zhu X X.Biomacromolecules,2014,15:1837.
[30] Cui H,He G,Wang H Y,Sun X H,Liu T H,Ding L P,Fang Y.ACS Appl.Mater.Interfaces,2012,4:6935.
[31] Kim I S,Kim S H.Int.J.Pharm.,2001,226:23.
[32] Giguère G,Zhu X X.J.Polym.Sci.,Part A:Polym.Chem.,2007,45:4173.
[33] Giguère G,Zhu X X.Biomacromolecules,2010,11:201.
[34] Li C C,Lavigueur C,Zhu X X.Langmuir,2011,27:11174.
[1] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.
[2] 冯岸超, 闫强, 袁金颖*. CO2刺激响应聚合物[J]. 化学进展, 2012, (10): 1995-2003.
[3] 罗时忠, 韩梦成, 曹月辉, 凌从祥. 温度响应性单分子聚合物胶束[J]. 化学进展, 2011, 23(12): 2541-2549.
[4] 武庆斌 任楠 张亚红 唐颐. 纳米粒子—温度响应型共聚物复合材料*[J]. 化学进展, 2009, 21(12): 2642-2650.
[5] 赵群,倪沛红. pH/温度响应的两亲性嵌段共聚物的研究*[J]. 化学进展, 2006, 18(06): 768-779.
阅读次数
全文


摘要

基于胆汁酸的刺激响应聚合物