English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1115-1127 DOI: 10.7536/PC200553 前一篇   后一篇

• 综述 •

高分子凝聚态结构与化学

陈峥1, 商赢双1, 张海博1, 姜振华1,**()   

  1. 1. 吉林大学化学学院 高性能聚合物合成技术国家地方联合工程实验室 特种工程塑料教育部工程研究中心 长春 130012
  • 收稿日期:2020-04-21 修回日期:2020-05-06 出版日期:2020-08-24 发布日期:2020-06-03
  • 通讯作者: 姜振华
  • 基金资助:
    国家重点研发计划(2017YFB0307601)

Structure and Chemistry of Polymer Condensed State

Zheng Chen1, Yingshuang Shang1, Haibo Zhang1, Zhenhua Jiang1,**()   

  1. 1. National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, Engineering Research Center of High-Performance Plastics of Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China
  • Received:2020-04-21 Revised:2020-05-06 Online:2020-08-24 Published:2020-06-03
  • Contact: Zhenhua Jiang
  • About author:
  • Supported by:
    the National Key Research and Development Program of China(2017YFB0307601)

高分子凝聚态的研究是高分子科学中的重要内容,在高分子凝聚态的形成机制及对宏观物理性能的影响方面已形成了较为系统的理论和应用实践基础,但在高分子凝聚态的化学性质方面虽有较多的研究工作,却鲜有系统性的归纳总结。凝聚态化学概念的提出,有助于科研人员更深入、系统地研究高分子聚集态结构与其化学性质之间的关系及相关规律。本文以高分子凝聚态为讨论对象,对高分子凝聚态化学性质的一些代表性研究工作进行了归纳和整理,内容包括:(1)高分子结构化学对高分子凝聚态的影响;(2)高分子凝聚态结构对进一步化学反应的影响;(3)高层级凝聚态的化学性质及其对化学反应的影响。希望通过对上述研究工作的实例分析和探讨,为科研人员从化学性质变化的角度去理解和开展高分子凝聚态的研究提供一些参考和启示。

The research of polymer condensed state(PCS) is an important content of polymer science. As well known, the PCS formation mechanism can impact on the macroscopic physical properties of PCS, and these related results are systematically summarized and built. However, a lot of researches are reported in respect of PCS chemical properties, few systematic induction and summary work is reported which can help scientists explore the relationships and scientific laws of PCS and its chemical properties. In this review, some representative researches of PCS chemical property are systematically summed up and summarized, and divided into three major contents. These three research contents are included that:(1) the impact of polymer structure chemistry on PCS,(2) the impact of PCS on chemical reactions based on 3rd polymer structural level, and(3) the impact of PCS on chemical reactions based on the higher polymer structural level. Focusing on these contents, we analyzes and discusses the chemical problems of PCS through a lot of reported research work. We hope the further research of PCS can be developed by the point of chemistry, and we also hope do some contributions to the development of PCS by this paper.

Contents

===1 The demand of developing condensed state chemistry

===2 Chemistry problems of polymer condensed state

===3 Main scientific problems of polymer condensed state chemistry

===3.1 Effect of polymer structure chemistry on polymer condensed state

===3.2 Effect of polymer condensed state on further chemical reactions

===3.3 Chemical property of high-level condensed state and its effect on chemical reactions

===4 Conclusion and outlook

()
图1 高分子结构单元间的三种不同链接方式
Fig.1 Three different linking manner between polymer structural units
图2 聚(3-烷基噻吩)的可能连接方式[10,11,12,13,14]
Fig.2 Possible linking methods of poly(3-alkylthiophene) [10,11,12,13,14]
图3 聚丙烯的无规、等规、间规三种构型
Fig.3 Three configurations of polypropylene: random, syndi-otactic and isotactic
图4 聚丁二烯的三种分子链构型
Fig.4 Three molecular chain configurations of polybutadiene
图5 由无规PVAc制备出30%结晶度的PVA[23]
Fig.5 PVA with 30% crystallinity prepared from random PVAc [23]
图6 液晶型聚芳醚酮的制备路线及相应聚合物的DSC曲线图。其中,DSC曲线图部分中(A)、(B)分别为聚合物70BP/30CH/100DF(a)、50BP/50CH/100DF(b)、70BP/30PH/ 100DF(c)、 50BP/50PH/100DF(d)的升、降温曲线[26]
Fig.6 The preparation and DSC curves of liquid crystal poly ether ketone 70BP/30CH/100DF(a)、50BP/50CH/100DF(b)、70BP/30PH/100DF(c), 50BP/50PH/100DF(d) at heating(A) and cooling(B)[26]
图7 液晶聚芳醚酮偏光显微镜图;70BP/30CH/100DF(A, B) 和50BP/50CH/100DF(C)。其中A图为未受机械剪切;B图受机械剪切。箭头显示机械剪切方向[26]
Fig.7 PLM morphological observations of 70BP/30CH/100DF(A, B) and 50BP/50CH/100DF(C),(A) without mechanical shearing;(B) with mechanical shearing. The arrow shows the shearing direction[26]
图8 液晶聚芳醚酮320 ℃时的偏光显微镜图;50BP/50CH/100DF。其中A图为未受机械剪切;B图受机械剪切。箭头显示机械剪切方向[26]
Fig.8 PLM morphological observations of 50BP /50CH /100DF at 320 ℃ without shearing(A) and with shearing(B). The arrow shows the shearing direction[26]
图9 均聚甲醛和共聚甲醛的结构式
Fig.9 Structure of POM(homo and copolymerization)
图10 (A)随联苯含量改变的共聚物的结晶温度与链段中联苯摩尔含量的变化曲线图; (B)随联苯含量改变的共聚物的DSC曲线和(C)XRD测试曲线[32]
Fig.10 (A)Plot of Tc changes versus molar fraction of BP(Biphenol). (B) Curves of Tc changes versus molar fraction of BP, and (C) WAXD reflection patterns of crystallized samples [32]
图11 聚合物的XRD测试曲线:(a)为PEKEK(4, 4' -二氟二苯甲酮和联苯二酚均聚)、(b)为50%无规共聚物、(c)为50%交替共聚物、(d)为PETMDEK(4, 4' -二氟二苯甲酮和3, 3', 5, 5' 四甲基联苯二酚均聚)[33]
Fig.11 WAXD curves of the polymers:(a) PEKEK,(b) 50% random copolymer,(c) 50% alternate copolymer, and(d) PETMDEK [33]
图12 超高分子量聚乙烯包含的多种凝聚态结构[37]
Fig.12 Condensed structure of UHMWPE[37]
表1 不同温度预热和未预热PET粉末或颗粒的聚合速率[45]
Table 1 Polymerization rate of PET powder or particles pre-heated at different temperatures and unheated[45]
图13 亚稳态RⅡ和RⅠ和α型Cort和Ctri的光聚合动力学[47]
Fig.13 Kinetics of photopolymerization in RⅡ(black line), RⅠ(red line), Cort(blue line), and Ctri(pink line) phases of octadecyl acrylate[47]
图14 离子交换树脂:(a)凝胶型离子交换树脂,(b)大孔型离子交换树脂,(c)扫描电镜下大孔离子交换树脂内部交联网络结构,(d)聚苯乙烯型阳离子交换树脂结构图
Fig.14 Ion exchange resin.(a) Gel-type ion exchange resin,(b) Macro-porous ion exchange resin,(c) Internal cross-linking network structure of macro-porous ion exchange resin under scanning electron microscope,(d) Structure of polystyrene type cation exchange resin
[1]
a) Xu R. Natl. Sci. Rev., 2018, 5:1.; b) Xu R, Wang K, Chen G, Yan W,. Natl. Sci. Rev., 2019,6:191.
[2]
潘祖仁 (Pan Z R). 高分子化学(第二版)(Polymer Chemistry,2nd). 北京: 化学工业出版社(Beijing:Chemical Industry Press), 1997.
[3]
刘风歧(Liu F Q), 汤心颐(Tang X Y). 高分子物理(第二版)(Polymer Physics,2nd). 北京: 高等教育出版社(Beijing:Higher Education Press), 2004.
[4]
吴其晔(Wu Q Y), 高分子凝聚态物理学(Condensed Matter Physics of Polymers). 北京:科学出版社(Beijing:Science Press), 2016.
[5]
华幼卿(Hua Y Q), 高分子物理(Polymer Physics). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 06.
[6]
丘坤元 (Qiu K Y). 化学通报(Chemistry Bulletin), 1962,(1):57.
[7]
王齐(Wang Q), 吴飞(Wu F), 徐君庭(Xu J T). 石油化工(Petrochemical Technology), 2003,(4):290.
[8]
Osaka I, McCullough R D. Accounts Chem. Res., 2008,41:1202.
[9]
Pomerantz M, Cheng Y, Kasim R K, Elsenbaumer R L. Mater. Chem., 1999,9:2155.
[10]
Chen T A, Rieke R D. Am. Chem. Soc., 1992,114:10087. https://pubs.acs.org/doi/abs/10.1021/ja00051a066

doi: 10.1021/ja00051a066     URL    
[11]
Loewe R S, Ewbank P C, Liu J, Zhai L McCullough R D. Macromolecules, 2001,34:4324.
[12]
Iraqi A, Barker G. Mater. Chem., 1998,8:25. http://xlink.rsc.org/?DOI=a706583c

doi: 10.1039/a706583c     URL    
[13]
Guillerez S, Bidan G. Synthetic Met., 1998,93:123.
[14]
许蔷(XU Q), 孙天旭(Sun T X), 袁苑(Yuan Y), 义建军(Yi J J). 石油化工(Petrochemical Technology), 2017,(6):828.
[15]
王静(Wang J). 天津大学硕士学位论文(Mater Dissertation of Tianjin University), 2005.
[16]
Kang J, Cao Y, Li H L, Li J P, Chen S H, Yang F, Xiang M. Polym. Res., 2012,19:1.
[17]
Rosa C D, Auriemma F, Spera C. Macromol. Symp., 2001,169:113.
[18]
McCullough R D, Lowe R D, Jayaraman M, Anderson D L. Org. Chem., 1993,58:904. https://pubs.acs.org/doi/abs/10.1021/jo00056a024

doi: 10.1021/jo00056a024     URL    
[19]
McCullough R D, Tristram Nagle S, Williams S P, Lowe R D, Jayaraman M. Am. Chem. Soc., 1993,115:4910.
[20]
Racanelli P, Porri L. Eur. Polym. J., 1970,6:751.
[21]
张雪涛(Zhang X T). 大连理工博士学术论文(Doctoral Dissertation of Dalian University of technology), 2009.
[22]
Cowie J M G, McEwen I J. Polymer, 1975,16:933.
[23]
王婧(Wang J), 苑会林(Yuan H L), 马沛岚(Ma P F), 李军(Li J). 塑料(Plastics), 2005,34(2):12.
[24]
刘李 (Liu L). 吉林大学博士学位论文(Doctoral dissertation of Jilin University), 2014.
[25]
杨延华(Yang Y H), 戴晓晖(Dai X H), 周兵(Zhou B), 马荣堂(Ma R T), 姜振华(Jiang Z H). 高等学校化学学报(Chemical Journal of Chinese University), 2005, (3):589.
[26]
张善举(Zhang X J), 富露祥(Fu L X), 杨德才(Yang D C), 孙 辉(Sun H), 王贵宾(Wang G B), 吴忠文(Wu Z W). 高等学校化学学报(Chemical Journal of Chinese University), 2001, (2):334.
[27]
张善举(Zhang X J), 郑玉斌(Zheng Y B), 吴忠文(Wu Z W), 田明文(Tian M W), 杨德才(Yang D C). 高等学校化学学报(Chemical Journal of Chinese University), 1998, (6):984.
[28]
张凌(Zhang L). 北京化工大学硕士学位论文(Mater Dissertation of Beijing University of Technology), 2004.
[29]
赵德仁(zhao D R). 聚合物合成工艺学(Polymer Synthesis Technology). 北京:化学工业出版社(Beijing:Chemical Industry Press), 1981.
[30]
李琦(Li Q), 徐泽夕(Xu Z X), 王越峰(Wang Y F), 王晓明(Wang X M), 曹志奎(Cao Z K), 马刚峰(Ma G F), 刘书铖(Liu S C), 姚亚峰(Yao Y F), 郭学群(Guo X Q). 塑料工业(China Plastic Industry), 2012,(3):46.
[31]
那辉(Na H), 苑晶(Yuan J), 倪余伟(Ni Y W), 张万金(Zhang W J), 吴忠文(Wu Z W). 高等学校化学学报(Chemical Journal of Chinese University), 1997,(5):826.
[32]
王汉夫(Wang H F), 赵晓刚(Zhao X G), 刘新才(Liu X C), 陈梁(Chen L), 王力风(Wang L F), 陈春海(Chen C H), 吴忠文(Wu Z W). 高等学校化学学报(Chemical Journal of Chinese University), 2004, (6):1156.
[33]
那辉(Na H), 吴忠文(Wu Z W), 张宏放(Zhang H F), 杨宝泉(Yang B Q), 王尚尔(Wang S E), 莫志深(Mo Z S). 高等学校化学学报(Chemical Journal of Chinese University), 1996,(7):1133.
[34]
李慧(Li H), 周宏伟(Zhou H W), 陈春海(Chen C H), 吴忠文(Wu Z W). 高等学校化学学报(Chemical Journal of Chinese University), 2003,(9):1691.
[35]
曹俊奎(Cao J K), 苏文成(Su W C), 朴明俊(Pu M J), 马荣堂(Ma R T), 吴忠文(Wu Z W). 高等学校化学学报(Chemical Journal of Chinese University), 1994,(5):779.
[36]
李云溪(Li Y X), 岳喜贵(Yue X G), 姜振华(Jiang Z H). 高等学校化学学报(Chemical Journal of Chinese University), 2015,(11):91.
[37]
刘圣恭(Liu S G). 湖南工业大学硕士学位论文(Mater Dissertation of Hunan University of Technology), 2019.
[38]
陈莉蓉(Chen L R). 华南理工大学硕士学位论文(Mater Dissertation of South China University of Technology), 2017.
[39]
Wu J J, Buckley C P, O’Connor J. Chem. Eng. Res. Des., 2002,80:39.
[40]
Bracco P, Bellare A, Bystolic A, Affatato S. Materials, 2017,10:791.
[41]
Gaymans R J, Amirtharaj J, Kamp H. J. Appl. Polym. Sci, 1982,27:2513.
[42]
Macchi E M, Morosoff N, Morawetz H. J. Polym. Sci. Pol. Chem., 1968,6:2033.
[43]
宇恒星(Yu H X), 黄南熏(Huang N X), 王朝生(Wang C S), 唐志廉(Tang Z L). 功能高分子学报(Journal of Functional Polymers), 2002,(3):329.
[44]
程雪坚(Cheng X J), 谢建军(Xie J J). 合成纤维工业(China synthetic of Fiber Industry), 2001,(4):43.
[45]
Duh B. J. Appl. Polym. Sci., 2006,102:623.
[46]
Shibasaki Y, Fukuda K. J. Polym. Sci. Pol. Chem., 1979,17:2947.
[47]
Yao M, Nie J, He Y. Macromolecules, 2018,51:3731.
[48]
王国建(Wang G J). 功能高分子材料(第二版)(Functional Polymers, 2nd).北京:化学工业出版社(Beijing: Chemical Industry Press), 2010.
[49]
晏欣(Yan X), 余红伟(Yu H W). 功能聚合物(Functional Polymer).北京:化学工业出版社(Beijing: Chemical Industry Press), 2013.
[50]
王国建(Wang G J). 功能高分子材料(第二版)(Functional Polymers). 上海: 同济大学出版社(Shanghai: Tongji University Press), 2014.
[51]
Chen Y, Lee C H, Rowlett J R, McGrath J E. Polymer, 2012,53:3143.
[52]
Feng S, Pang J, Yu X, Wang G, Manthiram A. ACS Appl. Mater. Inter., 2017,9:24527.
[53]
Shin D W, Guiver M D, Lee Y M. Chem. Rev., 2017,117:4759.
[54]
Zhang X C, Wu J Y, Peng L L, Zhu X L, Fu Y H. Adv. Mater. Chem., 2019,07:44.
[55]
刘晓明(Liu X M), 郭佳(Guo J), 冯霄(Feng X), 董建华(Dong J H). 中国科学基金(Bulletin of National Natural Science Foundation of China), 2014,5:330.
[56]
Zhi Y, Shao P, Feng X, Xia H, Zhang Y, Shi Z, Mu Y, Liu X. J. Mater. Chem. A, 2018,6:374.
[57]
Hu X, Long Y, Fan M, Yuan M, Zhao H, Ma J, Dong Z. Appl. Catal. B-Environ., 2019,244:25.
[58]
Lin S, Diercks C S, Zhang Y B, Kornienko N Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P, Yaghi O M, Chang C J. Science, 2015,349:1208. https://www.ncbi.nlm.nih.gov/pubmed/26404821

doi: 10.1126/science.349.6255.1470     URL     pmid: 26404821
[59]
Liu H, Chu J, Yin Z, Cai X, Zhuang L, Deng H. Chem, 2018,4:1696.
[60]
Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A. Am. Chem. Soc., 2019,141:6623.
[61]
Wang C, Wang Y, Ge R, Song X, Xing X, Lu H, Hao C, Guo X, Gao Y, Jiang D. Chem.-Eur. J., 2018,24:585.
[62]
Mitra S, Kandambeth S, Biswal B P, Khayum, M A, Choudhury C K, Mehta M, Kaur G, Banerjee S, Prabhune A, Verma S, Roy S, Kharul U K, Banerjee R. J. Am. Chem. Soc., 2016,138:2823.
[63]
Ma Y X, Li Z J, WeiL , Ding S Y, Zhang Y B, Wang W. Am. Chem. Soc., 2017,139:4995.
[64]
Thote J, Aiyappa H B, Deshpande A, Diaz Diaz D, Kurungot S, Banerjee R. Chem.-Eur. J., 2014,20:15961.
[65]
Fu Y, Zhu X, Huang L, Zhang X, Zhang F, Zhu W. Appl. Catal. B-Environ., 2018,239, 46.
[66]
Zhong W, Sa R, Li L, He Y, Li L, Bi J, Zhuang Z, Yu Y, Zou Z. Am. Chem. Soc., 2019,141:7615.
[1] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[2] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[3] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[4] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[5] 蒋革, 罗锋, 徐耀忠, 张晓辉. 近紫外光辅助4-硫脱氧胸苷抗癌作用的研究[J]. 化学进展, 2016, 28(8): 1224-1237.
[6] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[7] 褚道葆, 周莹, 张雪娇, 李艳, 宋奇. 基于离子液体电解液的有机电化学反应[J]. 化学进展, 2010, 22(12): 2316-2327.
[8] 帅志刚. 理论化学研究进展以及在可持续发展中的应用*[J]. 化学进展, 2009, 21(11): 2259-2270.
[9] 叶兴南,陈建民. 大气二次细颗粒物形成机理的前沿研究*[J]. 化学进展, 2009, 21(0203): 288-296.
[10] 银建中,马晓荣,张宪阵,王爱琴. CO2膨胀液体热力学特性及在化学反应中的应用*[J]. 化学进展, 2008, 20(09): 1251-1262.
[11] 戴东旭,杨学明. 基元化学反应态态动力学研究*[J]. 化学进展, 2007, 19(11): 1633-1645.
[12] 杨玉良,邱枫,唐萍,张红东. 高分子体系相分离动力学及图样生成和选择*[J]. 化学进展, 2006, 18(04): 362-381.
[13] 刘志敏 张建玲 韩布兴. 超( 近) 临界水中的化学反应[J]. 化学进展, 2005, 17(02): 266-274.
[14] 马磊,陈彬,吴骊珠,彭明丽,张丽萍,佟振合. 微反应器中的不对称光化学反应*[J]. 化学进展, 2004, 16(03): 386-.
阅读次数
全文


摘要

高分子凝聚态结构与化学