English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 398-409 DOI: 10.7536/PC170810 前一篇   后一篇

• 综述 •

铜基电催化剂还原CO2

刘孟岩1,2, 王元双1,2, 邓雯2, 温珍海2*   

  1. 1. 福州大学化学学院 福州 350002;
    2. 中国科学院福建物质结构研究所 中国科学院功能纳米结构设计与组装重点实验室 福建省纳米材料重点实验室 福州 350002
  • 收稿日期:2017-08-11 修回日期:2017-09-22 出版日期:2018-04-15 发布日期:2018-01-30
  • 通讯作者: 温珍海 E-mail:wen@fjirsm.ac.cn
  • 基金资助:
    中组部青年千人计划、福建省百人计划、福建省科技厅重点项目(No.2016H0043)资助

Electrocatalytic Reduction of CO2 on Copper-Based Catalysts

Mengyan Liu1,2, Yuanshuang Wang1,2, Wen Deng2, Zhenhai Wen2*   

  1. 1. College of Chemistry, Fuzhou University, Fuzhou 35000;
    2. CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received:2017-08-11 Revised:2017-09-22 Online:2018-04-15 Published:2018-01-30
  • Supported by:
    The work was supported by 1000 Plan Professorship for Young Talents in China, the Hundred Talents Program of Fujian Province, and the Fujian Science and Technology Key Project (No. 2016H0043).
温室气体CO2的大量排放给全球气候造成潜在威胁,电化学还原CO2为有用的化工产品作为一种人为的碳循环的方式,拓展了新的利用CO2的可能性,并且是一种很有前景的显著改善环境、促进可持续发展的方法。然而,在转化CO2为有价值的产品过程中,最大的挑战是抑制析氢副反应的同时达不到高效率、高选择性。铜因其在电催化还原CO2过程中优异的催化性能而得到广泛关注。本文重点介绍了近年来电催化还原CO2的发展以及电化学转化CO2的优缺点,介绍了CO2RR的热力学与动力学研究并概述了Cu电极、Cu MOFs材料电极以及通过氧化、合金化、纳米化和表面修饰等方法修饰的铜电极的进展,但是电催化还原CO2的反应机理尚不太确定。最后,讨论了未来铜基电极催化剂高效率地选择性转化CO2会面临的挑战和可能研究的方向。
The increasing greenhouse gas CO2 emission poses a potential threat to global climate. Electrochemical reduction of CO2 (CO2RR) to useful chemical products, an artificial way of carbon recycling, opens up new possibilities of utilization of CO2 and represents one promising solution that significantly improve the environment and promotes sustainable development. However, it remains a challenge to convert CO2 to valued products with high efficiency and selectivity while suppressing the H2 evolution(HER) side reaction. Copper attracts considerable attention currently because it displays interesting electrocatalytic performances for the reduction of CO2. Progress related to the electrocatalytic reduction of CO2 in the past few years, and their advantages and disadvantages are reviewed, and thermodynamics and kinetics research of CO2RR is described,with a focus on the progress in CO2RR on copper-based electrodes, which includes Cu electrode, Cu metal-organic frameworks electrode and Cu-based electrodes modified by oxidation, alloying, nanocrystalization and surface modification, even if the CO2 electrocatalytic reduction reaction mechanism remains uncertain. Finally, challenges and future research opportunities for tuning the selective conversion of CO2 on copper-based catalysts with high efficiency are also discussed.
Contents
1 Introduction
2 Research on the mechanism of electrocatalytic reduction of CO2
2.1 Thermodynamics and kinetics of electrochemical reduction of CO2
2.2 Research on the reaction mechanism of electrochemical reduction of CO2
3 Electrochemical reduction of CO2 on copper-based electrocatalysts
3.1 Copper electrode
3.2 Copper metal-organic framework electrode
3.3 Modified copper electrode
4 Conclusion

中图分类号: 

()
[1] 王红霞(Wang H X). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 2016.
[2] Logan B E, Rabaey K. Science, 2012, 337:686.
[3] Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010, 4:1259.
[4] Centi G, Quadrelli E A, Perathoner S. Energy Environ. Sci., 2013, 6:1711.
[5] Sheng W C, Kattel S,Yao S Y, Yan B H, Liang Z X, Hawxhurst C J, Wu Q Y, Chen J G. Energy Environ. Sci., 2017, 10:1180.
[6] Kumar B, Atal V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M. Angew. Chem. Int. Ed., 2017, 56:3645.
[7] 李博(Li B).兰州大学博士论文(Doctoral Dissertation of Lanzhou University), 2015.
[8] 郭辰辰(Guo C C), 董卫果(Dong W G). 煤质技术(Coal Quality Technology), 2016(s1):65.
[9] 靳治良(Jin Y L), 钱玲(Qian L), 吕功煊(Lv G X). 化学进展(Progress in Chemistry), 2010, 22:1102.
[10] Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas C G. ACS Catalysis, 2012, 2:770.
[11] Genovese C, Ampelli C, Perathoner S, Centi G. J. Catal., 2013, 308:237.
[12] Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40:3703.
[13] Genovese C, Ampelli C, Perathoner S, Centi G. J. Energy Chem., 2013, 22:202.
[14] Won D H, Shin H, Koh J, Chung J, Lee H S, Kim H, Woo S I. Angew. Chem. Int. Ed., 2016, 55:9297.
[15] Ouyang T, Huang H H, Wang J W, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2016, 56:738.
[16] Safaei T S, Mepham A, Zheng X L, Pang Y J, Dinh C T, Liu M, Sinton D, Kelley S O, Sargent E H. Nano Lett., 2016, 16:7224.
[17] Stewart C, Hessami M A. Energy Convers. Manage., 2005, 46:403.
[18] Huan T N, Simon P, Rousse G, Genois I, Artero V, Fontecave M. Chem. Sci., 2017, 8:742.
[19] Agarwal A S, Zhai Y M, Hill D, Sridhar N. ChemSusChem, 2011, 4:1301.
[20] Cheng D J, Negreiros F R, Apra E, Fortunelli A. ChemSusChem, 2013, 6:944.
[21] Jitaru M, Lowy D A, Toma M, Toma B C, Oniciu L. J. Appl. Electrochem, 1997, 27:875.
[22] Zhang L, Zhao Z J, Gong J. Angew. Chem. Int. Ed., 2017, 56:11326.
[23] Wu J J, Ma S C, Sun J, Gold J I, Tiwary C, Kim B S, Zhu L Y, Chopra N, Odeh I N, Vajtai R, Yu A Z, Luo R, Lou J, Ding G Q, Kenis P J, Ajayan P M. Nat, Commun, 2016, 7:13869.
[24] Wang S B, Wang X C. Angew. Chem. Int. Ed., 2016, 55:2308.
[25] Schreier M, Héroguel F, Steier L, Ahmad S, Luterbacher J S, Mayer M T, Luo J S, Grätzel M. Nat. Energy, 2017, 2:17087.
[26] Li C W, Kanan M W. J. Am. Chem. Soc., 2012, 134:7231.
[27] Birdja Y Y, Koper M T. J. Am. Chem. Soc., 2017, 139:2030.
[28] Slamet,Nasution H W, Purnama E, Riyani K, Gunlazuardi J. World Applied Sciences Journal, 2009, 6:112.
[29] Merino-Garcia I, Albo J, Irabien A. Energy Technol-Ger, 2017, 5:922.
[30] Yang K D, Ko W R, Lee J H, Kim S J, Lee H, Lee M H, Nam K T. Angew. Chem. Int. Ed., 2017, 56:796.
[31] Hori Y. Electrochemical CO2 Reduction on Metal Electrods.Modern Aspects of Electrochemistry.No.42.Vayenas O(ed.).Springer, New York, 2008. 89.
[32] Schneider J, Jia H F, Muckerman J T, Fujita E. Chem. Soc. Rev., 2012, 41:2036.
[33] Limkrailassiri K. Doctoral Dissertation of University of California, Berkeley. 2013.
[34] Benson E E, Kubiak C P, Sathrum A J, Smieja J M. Chem. Soc. Rev., 2009, 38:89.
[35] Zhang X, Wu Z S, Zhang X, Li L W, Li Y Y, Xu H M, Li X X, Yu X L, Zhang Z S, Liang Y Y, Wang H L. Nat. Commun., 2017, 8:14675.
[36] Qiao J L, Liu Y Y, Hong F, Zhang J J. Chem. Soc. Rev., 2014, 43:631.
[37] Hori Y, Murata A, Takahashi R. J. Chem. Soc. Farad. Tran.1, 1989, 85:2309.
[38] Dewulf D W, Jin T, Bard A J. J. Electrochem. Soc., 1989, 136:1686.
[39] Zhao K, Liu Y M, Quan X, Chen S, Yu H T. ACS Appl. Mater. Interfaces, 2017, 9:5302.
[40] Zuo Z J, Sun L L, Huang W, Han P D, Li Z H. Appl. Catal. A:Gen., 2010, 375:181.
[41] Gupta N, Gattrell M, MacDougall B. J. Appl. Electrochem., 2005, 36:161.
[42] Yang Y X, Evans J, Rodriguez J A, White M G, Liu P. Phys. Chem. Chem. Phys., 2010, 12:9909.
[43] Peterson A A, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov J K. Energy Environ. Sci., 2010, 3:1311.
[44] Durand W J, Peterson A A, Studt F, Abild-Pedersen F, Norskov J K. Surf. Sci., 2011, 605:1354.
[45] Schouten K J P, Kwon Y, van der Ham C J M, Qin Z, Koper M T M. Chem. Sci., 2011, 2:1902.
[46] Nie X W, Esopi M R, Janik M J, Asthagiri A. Angew. Chem. Int. Ed., 2013, 52:2459.
[47] Hori Y, Kikuchi K, Suzuki S. Chem. Lett., 1985, 14:1695.
[48] Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrochim. Acta., 1994, 39:1833.
[49] Lee J, Kwon Y, Machunda R L, Lee H J. Chem. Asian J., 2009, 4:1516.
[50] Kuhl K P, Cave E R, Abram D N, Jaramillo T F. Energy Environ. Sci., 2012, 5:7050.
[51] Hori Y, Wakebe H, Tsukamoto T, Koga O. Surf. Sci., 1995, 335:258.
[52] Takahashi I, Koga O, Hoshi N, Hori Y. J. Electroanal. Chem., 2002, 533:135.
[53] Hori Y, Takahashi I, Koga O, Hoshi N. J. Mol. Catal. A Chem., 2003, 199:39.
[54] Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, Durand W J, Dahl S, Norskov J K, Chorkendorff I. Phys. Chem. Chem. Phys., 2012, 14:76.
[55] Kas R, Kortlever R, Milbrat A, Koper M T, Mul G, Baltrusaitis J. Phys. Chem. Chem. Phys., 2014, 16:12194.
[56] Li C W, Ciston J, Kanan M W. Nature, 2014, 508:504.
[57] Sen S, Liu D, Palmore G T R. ACS Catalysis, 2014, 4:3091.
[58] Dutta A, Rahaman M, Luedi N C, Mohos M, Broekmann P. ACS Catalysis, 2016, 6:3804.
[59] Sui P C, Djilali N. J. Power Sources, 2006, 161:294.
[60] Lu Q, Lattanzi M W, Chen Y, Kou X, Li W, Fan X, Unruh K M, Chen J G, Xiao J Q. Angew. Chem. Int. Ed., 2011, 50:6847.
[61] Hayes J R, Hodge A M, Biener J, Hamza A V, Sieradzki K. J. Mater. Res., 2011, 21:2611.
[62] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341:1230444.
[63] Wang S B, Wang X C. Small, 2015, 11:3097.
[64] 张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K). 化学进展(Progress in Chemistry), 2014, 27:174.
[65] He H M, Perman J A, Zhu G S, Ma S Q. Small, 2016, 12:6309.
[66] Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E. Science, 2010, 327:313.
[67] Kumar R S, Kumar S S, Kulandainathan M A. Electrochem. Commun., 2012, 25:70.
[68] Hinogami R, Yotsuhashi S, Deguchi M, Zenitani Y, Hashiba H, Yamada Y. ECS Electrochem Lett., 2012, 1:H17.
[69] Siegfried B M J, Choi K S. Adv. Mater., 2004, 16:1743.
[70] Qu J P, Zhang X G, Wang Y G, Xie C X. Electrochim. Acta, 2005, 50:3576.
[71] Yano J, Morita T, Shimano K, Nagami Y, Yamasaki S. J. Solid State Electrochem., 2006, 11:554.
[72] Frese K W. J. Electrochem. Soc., 1991, 138:3338.
[73] Yano J, Yamasaki S. J. Appl. Electrochem., 2008, 38:1721.
[74] Chen C S, Handoko A D, Wan J H, Ma L, Ren D, Yeo B S. Catalysis Science & Technology, 2015, 5:161.
[75] Ren D, Deng Y L, Handoko A D, Chen C S, Malkhandi S, Yeo B S. ACS Catalysis. 2015, 5:2814.
[76] Mistry H, Reske R, Zeng Z H, Zhao Z J, Greeley J, Strasser P, Cuenya B R. J. Am. Chem. Soc., 2014, 136:16473.
[77] Canfield D,Frese K W. J. Electrochem. Soc., 1983, 130:1772.
[78] Le M, Ren M M, Zhang Z Y, Sprunger P T, Kurtz R L, Flake J C. J. Electrochem. Soc., 2011, 158:E45.
[79] Huan T N, Simon P, Benayad A, Guetaz L, Artero V, Fontecave M. Chemistry (Easton), 2016, 22:14029.
[80] Watanabe M, Shibate M, Katoh A. J. Electroanal. Chem., 1991, 35:319.
[81] Christophe J, Doneux T, Buess-Herman C. Electrocatalysis, 2012, 3:139.
[82] Kim D H, Resasco J, Yu Y, Asiri A M, Yang P D. Nat Commun, 2014, 5:4948.
[83] Guo X, Zhang Y, Deng C, Li X, Xue Y, Yan Y M, Sun K. Chem. Commun, 2015, 51:1345.
[84] Wang X Y, Liu S Q, Huang K L, Feng Q J, Ye D L, Liu B, Liu J L, Jin G H. Chin. Chem. Lett., 2010, 21:987.
[85] Zhang C S, Kang P, Bakir M, Lapides A M, Dares C J, Meyer T J. Proc. Natl. Acad. Sci. U. S. A., 2015, 112:15809.
[86] Rasul S, Anjum D H, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. Angew. Chem. Int. Ed., 2015, 54:2146.
[87] Sarfraz S, Garcia-Esparza A T, Jedidi A, Cavallo L, Takanabe K. ACS Catalysis, 2016, 6:2842.
[88] Ma S, Sadakiyo M, Heima M, Luo R, Haasch R T, Gold J I, Yamauchi M, Kenis P J. J. Am. Chem. Soc., 2017, 139:47.
[89] Raciti D, Livi K J, Wang C. Nano Lett., 2015, 15:6829.
[90] Ma M, Djanashvili K, Smith W A. Angew. Chem. Int. Ed., 2016, 55:6680.
[91] Reske R, Mistry H, Behafarid F, Roldan C B, Strasser P. J. Am. Chem. Soc., 2014, 136:6978.
[92] Ma M, Djanashvili K, Smith W A. Phys. Chem. Chem. Phys., 2015, 17:20861.
[93] Raciti D, Cao L, Livi K J T, Rottmann P F, Tang X, Li C Y, Hicks Z, Bowen K H, Hemker K J, Mueller T, Wang C. ACS Chem. Biol., 2017, 7:4467.
[94] Zhu W L, Zhang Y J, Zhang H Y, Lv H F, Li Q, Michalsky R, Peterson A A, Sun S H. J. Am. Chem. Soc., 2014, 136:16132.
[95] Feng X F, Jiang K L, Fan S S, Kanan M W. ACS Cent. Sci., 2016, 2:169.
[96] Dou L T, Cui F, Yu Y, Khanarian G, Eaton S W, Yang Q, Resasco J, Schildknecht C, Schierle-Arndt K, Yang P D. ACS Nano, 2016, 10:2600.
[97] Li Y F, Cui F, Ross M B, Kim D Y, Sun Y C, Yang P D. Nano Lett., 2017, 17:1312.
[98] Xie M S, Xia B Y, Li Y W, Yan Y, Yang Y H, Sun Q, Chan S H, Fisher A, Wang X. Energy Environ. Sci., 2016, 9:1687.
[99] Lan Y C, Gai C, Kenis P J A, Lu J X. ChemElectroChem, 2014, 1:1577.
[100] Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. J. Am. Chem. Soc., 2017, 139:4290.
[101] Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S. Nano Energy, 2016, 24:1.
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[7] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[8] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.
[9] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[10] 杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚. 二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理[J]. 化学进展, 2019, 31(2/3): 245-257.
[11] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[12] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[13] 陈利萍, 杨蓉, 燕映霖, 樊潮江, 史忙忙, 许云华. 氧化石墨烯还原程度的控制[J]. 化学进展, 2018, 30(12): 1930-1941.
[14] 饶红红, 薛中华, 王雪梅, 赵国虎, 侯辉辉, 王晖. 基于电化学还原氧化石墨烯的电化学传感[J]. 化学进展, 2016, 28(2/3): 337-352.
[15] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
阅读次数
全文


摘要

铜基电催化剂还原CO2