English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 939-953 DOI: 10.7536/PC181124 前一篇   后一篇

• •

CO2电还原用氮掺杂碳基过渡金属单原子催化剂

朱红林1, 李文英1, 黎挺挺1, Michael Baitinger2, Juri Grin2, 郑岳青1,**()   

  1. 1.宁波大学应用固体化学研究中心 宁波 315211
    2.德国马克斯普朗克固体化学物理研究所 德雷斯顿 01187
  • 收稿日期:2018-12-03 出版日期:2019-07-15 发布日期:2019-02-25
  • 通讯作者: 郑岳青
  • 作者简介:
  • 基金资助:
    国家自然科学基金项目(21603110)

N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction

Hong-lin Zhu1, Wen-ying Li1, Ting-ting Li1, Michael Baitinger2, Juri Grin2, Yue-qing Zheng1,**()   

  1. 1.Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo 315211, China
    2.Max-Planck-Insititue für Chemische Physik Fester Stoffe, Dresden 01187, Germany
  • Received:2018-12-03 Online:2019-07-15 Published:2019-02-25
  • Contact: Yue-qing Zheng
  • Supported by:
    National Natural Science Foundation of China(21603110)

温和条件下将CO2电催化还原(CO2RR)为高能量密度燃料和高附加值碳产品是降低大气中CO2浓度、储存间歇性可再生能源、实现碳中和的重要途径之一。设计和开发对电催化CO2RR兼具高活性、高选择性、高稳定性、且对析氢反应(HER)具有显著抑制作用的高性能廉价催化剂是CO2RR研究的关键。单原子催化剂(SACs)由于其独特的电子结构和几何结构对许多重要化学反应(如CO氧化反应、加氢反应、析氧反应、氧还原反应、析氢反应等)显示出优异的催化活性而广受关注。近年来,N掺杂多孔碳载体过渡金属单原子催化材料(M-N-C)显示出对电化学二氧化碳还原的广阔前景、并有望成为在水相电解质中还原CO2的贵金属(Au,Ag)催化剂的替代品。本文从单原子催化材料M-N-C的制备、影响电催化性能的因素及MNx活性基团三个方向介绍了单原子催化剂M-N-C电催化CO2RR的研究现状和进展。最后,就目前该方向研究中尚待解决的问题进行了总结、并对下一步的研究进行了展望。

Electrocatalytic reduction of CO2 reduction reaction(CO2RR) to high energy density fuel and high value-added carbon products under mild conditions is an extremely promising way for reduction of the CO2 concentration in atmosphere and storage of the intermittent renewable energy, as well as for carbon neutralization. The design and development of low-cost high-performance catalysts with high activity, high selectivity, high stability and significant suppress of hydrogen evolution reaction(HER) is the key to the CO2RR research. On the other hand, single atomic catalysts(SACs), due to their unique electronic and geometric structures, exhibit unusual catalytic activity for many important chemical reactions, such as CO oxidation, hydrogenation, OER, ORR, HER, etc., and have attracted extensive attention. Inspired by the profound progress, very recently, N-doped porous carbon support transition metal single atomic materials(M-N-C) have been employed in CO2RR research. The results manifest that M-N-C catalytic materials have exciting prospects for CO2RR, and are expected to be a substitute for precious metal(Au, Ag) catalysts for CO2 reduction in electrolyte aqueous media. This review is focused on fabrications, electrocatalytic performance and MNx active sites of M-N-C SACs used in electrochemical CO2RR. Finally, the problems remaining to be solved are summarized, and future research aspects and new ideas are prospected.

()
图1 Co-N5/HNPCSs合成流程示意图[53]
Fig. 1 Schematic illustration of Co-N5/HNPCSs[53]
图2 合成催化剂M-N-C的流程图[57]
Fig. 2 Protocol for the synthesis of M-N-C electrocatalysts[57]
表1 文献报道的M-N-C的单原子电催化CO2还原的总结
Table 1 Summary of electrocatalytic CO2RR performances of the M-N-C catalysts reported in literatures Properties of polyelectrolyte-based draw solution
Catalysts (a)
M cont.
(wt%/
at%)
(b)
N cont.
(wt%/
at%)
(c)
M NPs
(d)
MNx
(e)
Catholyte
NaHCO3
or KHCO3
Product On-set [Potentials
(V vs. RHE),
FECO (%),
|J| (mA/cm2)]
Maximal FECO[FECO (%),
Potentials
(V vs. RHE),
|J| (mA/cm2)]
Stability [Potentials
(V vs. RHE),
time (h),
|J| (mA/cm2),
FECO (%)]
TOF
(h-1)
Tafel slope
(mV/
dec)
ref
Potent. FECO,|J| FECO Potent. |J|tot,|J|CO Potent. time |J|tot,|J|CO FECO
Mn-N-C 5 wt 6.22 wt no Nx 0.1 M K CO,H2,
HCO2
0.34 , 1.0 80 0.50 23, 49
Mn-NG N/A N/A no MNx 0.5 M K CO, H2 18 0.51 51
Mn-N-C 0.2 at 8.2 at no MNx 0.1 M K CO, H2, CH4 -0.41 40 -0.57 52
Fe-N-C 6 wt 7.2 wt no FeNx 0.1 M K CO, H2, HCO2 0.40 , 1.0 80 0.50 23, 49
Fe-NG N/A N/A MNx 0.5 M K CO, H2 28 0.41 51
Fe-N-C 0.3 at 8.2 at yes MNx 0.1 M K CO, H2, CH4 -0.41 65 -0.55 52
FeN-GS N/A N/A 0.1 M K CO, H2 -0.45 48 -0.52 , 0.32 54
Fe-N-C
(4-1-0.25-1000)
coated NPS
0.1 at 0.4 at yes FeNx 0.5 M K CO, H2 -0.45 80 -0.57 1.15, -0.57 12 h 0.6, 78 370 56
Fe-N-C 0.08 at 3.3 at no 0.5 M K CO, H2 -0.30 85 -0.47 1.5, -0.47 12 h 1.0, 83 194 57
Co-NG N/A N/A MNx 0.5 M K -0.50 51
Co-N-C 0.4 at 10.5 at yes MNx 0.1 M K CO, H2 -0.41 18 -0.50 52
CoN-GS 0.1 M K CO, H2 -0.30 30.5 -0.53 , 0.32 54
Co-N-C 0.09 at 3.3 at no 0.5 M K CO, H2 -0.30 57
Ni-N-C 0.7 at 9.5 at yes MNx 0.1 M K CO, H2 -0.55 85 -0.78 52
Ni-NG 2.2 wt 3.93 at MNx 0.1 M K CO, H2 -0.5 >90 -0.7 -0.9 -0.65 5 h 0.35
0.1,
7684 4600
(-0.8 V)
126 50
Ni-NG-1/5 1.0 wt 1.53 at no MNx 0.1 M K CO, H2 >85 -0.7 - 0.9 4500
(-0.8 V)
50
Ni-NG 0.44 at 6.53 at no Ni-N 0.5 M K CO, H2 0.31 93
>80
0.87
-0.7 - 0.9
8.6, 6.9 0.75 20 h 12, 90 76 320
(:0.75 V)
110 51
NiN-GS
+coated Ni
particles
N/A N/A yes Ni-Nx 0.1 M K CO, H2 <-0.35 2.0, 93.2 0.81 4, 0.81 20 h 3.4, > 80 28 800 138.5 54
Ni-N-C 0.10 at 3.2 at no 0.5 M K CO, H2 -0.30 93 -0.67 3.9, -0.67 12 h 3.9, 93 119 57
Catalysts (a)
M cont.
(wt%/at%)
(b)
N cont.
(wt%/
at%)
(c)
M NPs
(d)
MNx
(e)
Catholyte
NaHCO3
or KHCO3
Product On-set [Potentials
(V vs. RHE),
FECO (%),
|J| (mA/cm2)]
Maximal FECO[FECO (%),
Potentials
(V vs. RHE),
|J| (mA/cm2)]
Stability [Potentials
(V vs. RHE),
time (h),
|J| (mA/cm2),
FECO (%)]
TOF
(h-1)
Tafel slope
(mV/
dec)
ref
Potent. FECO,|J| FECO Potent. |J|tot,|J|CO Potent. time |J|tot,|J|CO FECO
Ni SAs/N-C 1.53 wt no Ni-N3C 0.5 M K CO, H2 -0.57 71.9 -0.9 7.5, -1.0 60 h , 10.1 68 5273(-1.0 V)
(JCO:7.37
mA/cm2)
249 59
Ni-N4-C 1.41 wt N/A no NiN4 0.5 M K CO, H2 0.39 64, 1.5 99 -0.81 28.6, -0.81 30 h 15.0, 103 65
A-Ni-NG 4.6 wt
0.82 at
4.8 at cluster Ni-N4 0.5 M K CO, H2, CH4 -0.35 10.5, 97 -0.98 8000 108 55
Cu-NG N/A N/A MNx CO, H2 10 -0.61 51
Cu-N-C 0.8 at 14.6 at yes MNx 0.1 M K CO, H2 -0.45 <25 >-0.78 52
Co-N2 N/A 9.27 at no CoN2 0.5 M K CO, H2 0.22 95 0.68 0.63 60 h 18.1, 94 33 000 62
Co-N3 N/A 13.67 at no CoN3 0.5 M K CO, H2 0.45 63 0.53 62
Co-N4 N/A 18.17 at no CoN4 0.5 M K CO, H2 0.55 4.2 0.83 84 62
Fe-N-C
Fe1.0w
3.0 wt (cry.Fe 1.4 wt) FeN4
1.6 wt%
0.5 M Na CO, H2 -0.5 31 -0.5 60
Fe-N-C
Fe0.5d
1.5 (cry.Fe 0.0 wt) FeN4
1.5 wt%
0.5 M Na CO, H2, CH4 -0.3 80 -0.5 -0.6 6 h 5.6, 60
Fe-N-C
Fe0.5d-950
2.1 wt (cry.Fe 0.1 wt) FeN4
2.0 wt%
0.5 M Na CO, H2, CH4 -0.3 80 -0.5 60
Fe-N-C
Fe1.0d
3.4 wt (cry.Fe 0.3 wt) FeN4
3.1 wt%
0.5 M Na CO, H2, CH4 -0.3 55 -0.5 60
Fe-N-C
Fe4.0d
12.0 wt(cry.
Fe 12.0 wt)
FeN4
0.0 wt%
0.5 M Na CO, H2 -0.5 10 -0.6 60
A-Ni-NSG 2.8 wt
/0.47 at
N9.2 at
S 0.35 at
Ni-N3S 0.5 M K CO, H2, CH4 -0.18 9.5, 97 -0.61 -0.72 100 h , ~ 22 14 800
(: 0.61 V)
114 55
Co-N,P-C
with Co2P
0.45 at N2.68 at
P 0.98 at
CoNx 0.1 M K CO, H2, CH4 -0.30 10, 62 -0.70 3.1, -0.60 20 h 3, 1.8 58 129 58
FeMn-N-C Fe 3 wt
Mn 1 wt
7.3wt no MNx 0.1 M K CO, H2, HCO2 0.36 , 1.0 80 0.50 23, 49
Catalysts (a)
M cont.
(wt%/
at%)
(b)
N cont.
(wt%/
at%)
(c)
M NPs
(d)
MNx
(e)
Catholyte
NaHCO3
or KHCO3
Product On-set [Potentials
(V vs. RHE),
FECO (%),
|J| (mA/cm2)]
Maximal FECO[FECO (%),
Potentials
(V vs. RHE),
|J| (mA/cm2)]
Stability [Potentials
(V vs. RHE),
time (h),
|J| (mA/cm2),
FECO (%)]
TOF
(h-1)
Tafel slope
(mV/
dec)
ref
Potent. FECO,|J| FECO Potent. |J|tot,|J|CO Potent. time |J|tot,|J|CO FECO
Fe-N-C
C-AFC?ZIF-8
Fe 1.47 wt
Zn 3.45 wt
10.15 wt no FeNx 1 M K CO, H2 -0.33 89.1,2.0 93.0 -0.43 5.0, 61
Fe-N-C Fe: 0.1 at
Zn:0.1 at
2.3 at no MN4
+MN2+2
0.1 M K CO, H2, CH4 0.29 53, 1.5 93 0.58 , 2.7 0.58 20 h 2.8, >93 64
Co-N-C Co: 0.1 at
Zn:0.2 at
2.2 at no MN4 0.1 M K CO, H2, CH4 0.38 16, 1.5 45 0.59 , 0.75 65
C-Zn2Ni1 ZIF-8 Ni: 0.93 wt
Zn: 3.22 wt
6.36 wt no NiN2.6
ZnN3.5
1 M K CO, H2 0.43 63, 96 0.73 , 22 63
C-Zn1Ni1 ZIF-8 Ni: 2.07 wt
Zn: 2.91 wt
7.29 wt no NiN2.7
ZnN3.4
1 M K CO, H2 0.43 80, 98 0.73 , 32.5 63
C-Zn1Ni4 ZIF-8 Ni: 5.44 wt
Zn: 3.29 wt
10.35 wt no NiN2.4
ZnN3.5
1 M K CO, H2 0.43 83, 99 0.73 , 45 0.63 2 h 26, 98 10 087
(1.13 V)
63
Co-N5/HNPCSs 3.54 wt no CoN5 0.2 M Na CO, H2 -0.37 99.2
99.4
>90
-0.73
-0.79
-0.57
-0.88
18.8, -0.73
10 h 10.2,~4.5 480.2(-0.73 V)(JCO: ~
4.5 mA/cm2)
53
Co-N4/HNPCSs 3.82 wt no CoN4 0.2 M Na CO, H2 53
Co-N3/HNPCSs 3.18 wt no CoN3 0.2 M Na CO, H2 53
Fe-N5/HNPCSs 3.03 wt 53
Ni-N5/HNPCSs 3.32 wt 53
Cu-N5/HNPCSs 3.75 wt 53
图3 电催化还原CO2产生CO和H2的法拉第效率图[60]
Fig. 3 Faradaic yield for CO(a) and H2(b) formation during CO2 reduction [60]
图4 (a)LSV曲线;(b)不同电位下的法拉第效率图[62]
Fig. 4 (a) LSV curves;(b) CO Faradaic efficiencies at different applied potentials[62]
图5 C-Zn1Ni4 ZIF-8催化CO2还原反应的电催化性能。(a)-0.63 V(vs. RHE)电压下C-Zn1Ni4 ZIF-8的稳定性;(b) -0.83 V (vs. RHE)电压下CO的电流密度与C-ZnxNiy ZIF-8中Ni含量的关系[63]
Fig. 5 Electrocatalytic performance of the CO2RR over the catalysts.(a) Stability test of C-Zn1Ni4 ZIF-8 at -0.63 V vs. RHE;(b) CO current density versus the content of Ni in C-ZnxNiy ZIF-8 at -0.83 V vs. RHE[63]
图6 N-C催化剂中各种结构形态的N原子[49]
Fig. 6 Structural models of nitrogen atoms in various chemical environments in the N-C catalyst [49]
图7 (a)M-N4-C10和M-N2+2-C8(M=Fe or Co) 的活性位点;(b)M-N2+2-C8位点上应用电极电势0 V和-0.6 V计算的CO2还原为CO的自由能;(c)COOH在 M-N4-C10 和 M-N2+2-C8位点上的解离反应的初始和最终态[64]
Fig. 7 (a) Atomic structure of M-N4-C10 and M-N2+2-C8(M=Fe or Co) active sites.(b) Calculated free energy evolution of CO2 reduction to CO on M-N2+2-C8 sites under an applied electrode potential(U) of 0 V and -0.6 V.(c) The initial and final state for the COOH dissociation reaction on M-N4-C10 and M-N2+2-C8 sites [64]
图8 (a) 不同催化剂的LSV曲线;(b)Co-N2和经NH3处理Co-N2的EXAFS;(c) Co-N2和经NH3处理Co-N2催化还原生成CO电流密度;(d)Co-N2 和 Co-N4电催化还原CO2生成CO的吉布斯自由能[62]
Fig. 8 (a) Single oxidative LSV scans for different catalysts.(b) EXAFS and(c) CO specific current density for Co-N2 and NH3-treated Co-N2.(d) Calculated Gibbs free energy diagrams for CO2 electroreduction to CO on Co-N2 and Co-N4[62]
图9 CO2电催化还原CO2的可能的反应路径[59]
Fig. 9 Proposed reaction paths for CO2 electroreduction by Ni SAs/N-C [59]
图10 电催化二氧化碳还原过程中活性位点的演变[55]
Fig. 10 Structural evolution of the active site in electrochemical CO2 reduction [55]
图11 合成Ni-N4-C催化剂的拓扑化学转化策略及其活性位点示意图[65]
Fig. 11 Schematic illustration of the topo-chemical transformation strategy[65]
[1]
Aresta M, Dibenedetto A, Angelini A . Chem. Rev., 2014,114:1709.
[2]
Qiao J, Liu Y, Hong F, Zhang J . Chem. Soc. Rev., 2014,43:631.
[3]
周锋(Zhou F), 刘士民(Liu S M), Alshammari A S, 邓友全(Deng Y Q) . 科学通报 (Chinese Science Bulletin), 2015,60:2466.
[4]
Mistry H, Varela A S, Kühl S, Strasser P, Cuenya B R . Nat. Rev. Mater., 2016,1:16009.
[5]
Qu Y, Tsuneishi C, Tateno H, Matsumura Y, Atobe M . React. Chem. Eng., 2017,2:871.
[6]
Simonet J . Electrochem. Commun., 2018,88:67.
[7]
White J L, Baruch M F, Pander III J E, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, Shaw T W, Abelev E, Bocarsly A B . Chem. Rev., 2015,115:12888.
[8]
Jhong H M, Ma S, Kenis P J A . Curr. Opin. Chem. Eng., 2013,2:191.
[9]
Chen Z, Concepcion J, Brennaman M K, Kang P, Norris M R, Hoertz P G, Meyer T J J. Proc. Nat. Acad. Sci. U.S.A, 2012,109:15606.
[10]
Kang P, Chen Z, Nayak A, Zhang S, Meyer T J . Energy Environ. Sci., 2014,7:4007.
[11]
Tatin A, Comminges C, Kokoh B, Costentin C, Robert M, Savéant J M . Proc. Nat. Acad. Sci. U. S. A., 2016,113:5526.
[12]
Morlanes N, Takanabe K, Rodionov V . ACS Catal., 2016,6:3092.
[13]
Hori Y . Electrochemical CO2 Reduction on Metal Electrodes. NY:Springer, 2008. 89.
[14]
Schneider J, Jia H F, Muckerman J T, Fujita E . Chem. Soc. Rev., 2012,41:2036.
[15]
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A . Science, 2016,353:467.
[16]
Zhang Y J, Sethuraman V, Michalsky R, Peterson A A . ACS Catal., 2014,4:3742.
[17]
Kim D, Resasco J, Yu Y, Asiri A M, Yang P . Nat. Commun., 2014,5:4948.
[18]
Martin A J, Larrazabal G O, Perez-Ramirez J . Green. Chem., 2015,17:5114.
[19]
Zhang L, Zhao Z J, Gong J . Angew. Chem., Int. Ed. 2017,56:11326.
[20]
Bligaard T, Nørskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J . J.Catal., 2004,224:206.
[21]
Yang H P, Lin Q, Zhang H W, Li G D, Fan L D, Chai X Y, Zhang Q L, Liu J H, He C X . Chem. Commun., 2018,54:4108.
[22]
Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J L . J.Am. Chem. Soc., 2017,139:2160. https://www.ncbi.nlm.nih.gov/pubmed/28150946

doi: 10.1021/jacs.6b12103     URL     pmid: 28150946
[23]
Lu Q, Rosen J, Zhou Y, Hutchings G, Kimmel Y C, Chen J G, Jiao F . Nat. Commun., 2014,5:3242.
[24]
Mistry H, Reske R, Zeng Z, Zhao Z J, Greeley J, Strasser P, Cueny B R . J.Am. Chem. Soc., 2014,136:16473. https://www.ncbi.nlm.nih.gov/pubmed/25325519

doi: 10.1021/ja508879j     URL     pmid: 25325519
[25]
刘孟岩(Liu M Y), 王元双(Wang Y S), 邓雯(Deng W), 温珍海(Wen Z H) . 化学进展 (Progress in Chemistry), 2018,30:398.
[26]
Kumar B, Atla V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M . Angew. Chem. Int. Ed., 2017,56:3645.
[27]
Zhang S, Yang Y, Zheng Y, Zhu H . J.Solid State Chem., 2018,263:44.
[28]
Huang P, Ci S, Wang G, Jia J, Xu J, Wen Z . J. CO2 Util., 2017,20:27.
[29]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y, Paris A R, Kim D, Yang P, Yaghi O M, Chang C J . Science, 2015,349:1208.
[30]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A . Nat. Commun., 2013,4:2819.
[31]
Zhu D D, Liu J L, Qiao S Z . Adv. Mater., 2016,28:3423.
[32]
Wu J, Liu M, Sharma P P, Yadav R M, Ma L, Yang Y, Zou X, Zhou X D, Vajtai R, Yakobson B I, Lou J, Ajayan P M . Nano. Lett., 2016,16:466.
[33]
Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, Luo Y, Wu C, Xie Y . Nat. Commun., 2015,6:8647.
[34]
Kaplan A, Yuan Z, Benck J D, Govind Rajan A, Chu X S, Wang Q H, Strano M S . Chem. Soc. Rev., 2017,46:4530.
[35]
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M . Nat. Mater., 2015,14:763.
[36]
Petkovich N D, Stein A . Chem. Soc. Rev., 2013,42:3721.
[37]
Zhang S, Kang P, Ubnoske S, Brennaman M K, Song N, House R L, Glass J T, Meyer T J . J.Am. Chem. Soc., 2014,136:7845. https://www.ncbi.nlm.nih.gov/pubmed/24779427

doi: 10.1021/ja5031529     URL     pmid: 24779427
[38]
Zheng Y, Jiao Y, Zhu Y H, Cai Q, Vasileff A, Li L H, Han Y, Chen Y, Qiao S Z . J.Am. Chem. Soc., 2017,139:3336. https://www.ncbi.nlm.nih.gov/pubmed/28221033

doi: 10.1021/jacs.6b13100     URL     pmid: 28221033
[39]
Lei F, Liu W, Sun Y, Xu J, liu K, Liang L, Yao T, Pan B, Wei S, Xie Y . Nat. Commun., 2016,7:12697.
[40]
Wang Q, Zhou Z Y, Lai Y J, You Y, Liu J G, Wu X L, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun S G . J.Am. Chem. Soc., 2014,136:10882. https://www.ncbi.nlm.nih.gov/pubmed/25033100

doi: 10.1021/ja505777v     URL     pmid: 25033100
[41]
Liu J . ACS Catal., 2017,7:34.
[42]
Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N . Science, 2016,352:797.
[43]
Dou M, He D, Shao W, Liu H, Wang F, Dai L . Chem. Eur. J., 2016,22:2896.
[44]
Zhang B, Asakura H, Zhang J, De S, Yan N . Angew. Chem. Int. Ed., 2016,55:8319.
[45]
Guan H, Lin J, Qiao B, Yang X, Li L, Miao S, Liu J, Wang A, Wang X, Zhang T . Angew. Chem., 2016,128:2870.
[46]
Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X . Sci. Adv., 2015,1:e1500462.
[47]
Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X . Science, 2014,344:616.
[48]
Peng Y, Lu B, Chen S . Adv. Mater., 2018,1801995.
[49]
Varela A S, Sahraie N R, Steinberg J, Ju W, Oh H S, Strasser P . Angew. Chem. Int. Ed., 2015,54:10758.
[50]
Su P, Iwase K, Nakanishi S, Hashimoto K, Kamiya K . Small, 2016,12:6083.
[51]
Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H . Energy Environ. Sci., 2018,11:893.
[52]
Ju W, Bagger A, Hao G P, Varela A S, Sinev I, Bon V, Cuenya B R, Kaskel S, Rossmeisl J, Strasser P . Nature Commun., 2017,8:944.
[53]
Pan Y, Lin R, Chen Y J, Liu S J, Zhu W, Cao X, Chen W, Wu K, Cheong W C, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y . J.Am. Chem. Soc., 2018,140:4218. https://www.ncbi.nlm.nih.gov/pubmed/29517907

doi: 10.1021/jacs.8b00814     URL     pmid: 29517907
[54]
Jiang K, Siahrostami S, Akey A J, Li Y, Lu Z, Lattimer J, Hu Y, Stokes C, Gangishetty M, Chen G, Zhou Y, Hill W, Cai W, Bell D, Chan K, Nørskov J K, Cui Y, Wang H . Chem., 2017,3:950.
[55]
Yang H B, Hung S F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H M, Li C M, Zhang T, Liu B . Nature Energy, 2018,3:140.
[56]
Shi J J, Hu X M, Madsen M R, Lamagni P, Bjerglund E T, Pedersen S U, Skrydstrup T, Daasbjerg K . ACS Appl. Nano Mater., 2018,1:3608.
[57]
Hu X M, Hval H H, Bjerglund E T, Dalgaard K J, Madsen M R, Pohl M M, Welter E, Lamagni P, Buhl K B, Bremholm M, Beller M, Pedersen S U, Skrydstrup T, Daasbjerg K . ACS Catal., 2018,8:6255.
[58]
Pan F, Liang A, Duan Y, Liu Q, Zhang J, Li Y . J. Mater. Chem. A, 2017,5:13104.
[59]
Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y . J.Am. Chem. Soc., 2017,139:8078. https://www.ncbi.nlm.nih.gov/pubmed/28595012

doi: 10.1021/jacs.7b02736     URL     pmid: 28595012
[60]
Huan T N, Ranjbar N, Rousse G, Sougrati M, Zitolo A, Mougel V, Jaouen F, Fontecave M . ACS Catal., 2017,7:1520.
[61]
Ye Y, Cai F, Li H, Wu H, Wang G, Li Y, Miao S, Xie S, Si R, Wang J, Bao X . Nano Energy, 2017,38:281.
[62]
Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y . Angew. Chem. Int. Ed., 2018,57:1944.
[63]
Yan C, Li H, Ye Y, Wu H, Cai F, Si R, Xiao J, Miao S, Xie S, Yang F, Li Y, Wang G, Bao X . Energy Environ. Sci., 2018,11:1204.
[64]
Pan F, Zhang H, Liu K X, Cullen D, More K, Wang M, Feng Z, Wang G, Wu G, Li Y . ACS Catal., 2018,8:3116.
[65]
Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, Xie Y . J.Am. Chem. Soc., 2017,139:14889. https://www.ncbi.nlm.nih.gov/pubmed/28992701

doi: 10.1021/jacs.7b09074     URL     pmid: 28992701
[66]
Lefè vre M, Proietti E, Jaouen F, Dodelet J P . Science, 2009,324:71.
[67]
Ramaswamy N, Tylus U, Jia Q, Mukerjee S . J.Am. Chem. Soc., 2013,135:15443. https://www.ncbi.nlm.nih.gov/pubmed/24032690

doi: 10.1021/ja405149m     URL     pmid: 24032690
[68]
Sharma P P, Wu J, Yadavet R M, Liu M, Wrightal C J, Tiwary C S, Yakobson B I, Lou J, Ajayan P M, Zhou X D . Angew. Chem. Int. Ed., 2015,54:13701.
[69]
Wu J, Liu M, Sharma P P, Yadav R M, Ma L, Yang Y, Zou X, Zhou X D, Vajtai R, Yakobson B I, Lou J, Ajayan P M . Nano Letter., 2016,16:466.
[70]
Xu J, Kan Y, Huang R, Zhang B, Wang B, Wu K H, Lin Y, Sun X, Li Q, Centi G, Su D . Chemsuschem, 2016,9:1085.
[71]
Wu J, Ma S, Sun J, Gold J I, Tiwary C, Kim B, Zhu L, Chopra N, Odeh I N, Vajtai R, Yu A, Luo R, Lou J, Ding G, Kenis P J A, Ajayan P M . Nat. Commun., 2016,7:13869.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[3] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[4] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[5] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.