English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 133-144 DOI: 10.7536/PC190431 前一篇   

所属专题: 计算化学

• •

计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体

刘景昊1, 伍学谦2, 吴玉锋1, 俞嘉梅1,**()   

  1. 1. 北京工业大学材料科学与工程学院 北京 100124
    2. 北京工业大学环境与能源工程学院 北京 100124
  • 收稿日期:2019-04-23 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 俞嘉梅
  • 基金资助:
    国家重点研发计划项目资助(2018YFC1902506)

Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks

Jinghao Liu1, Xueqian Wu2, Yufeng Wu1, Jiamei Yu1,**()   

  1. 1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    2. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2019-04-23 Online:2020-01-15 Published:2019-12-11
  • Contact: Jiamei Yu
  • About author:
    ** E-mail:
  • Supported by:
    National Key R&D Program of China(2018YFC1902506)

碳氢化合物在工业生产中发挥着重要的作用,其分离纯化过程是工业生产中重要的环节。低碳烃气体的物理化学性质十分相似,仅在分子尺寸和不饱和度等方面有微小差异,分离困难。传统的精馏等分离方式能耗高、有时效率较低。金属有机骨架材料由于其优异的性能(高比表面积、高孔隙率、结构尺寸可控)在吸附分离方面发挥了重要作用。计算模拟方法能够在微观层次上描述吸附分离过程,起到实验无法替代的作用。本文综述了计算模拟用于探索金属有机骨架吸附分离低碳烃的最新研究进展,探讨了其在金属有机骨架吸附分离低碳烃研究中存在的问题,并展望了发展前景。

Hydrocarbons play an important role in industrial productionses. The separation and purification of hydrocarbons is one of the most important industrial processes. The separation of low carbon hydrocarbon gases is extremely difficult since their physicochemical properties are similar. The minor differences are their molecular size and valence state. The traditional separation methods suffer from the high energy consumption and low efficiency. Metal-organic frameworks show superiority in separations due to their unique properties including high specific surface area, high porosity and controllable structure size. Computational simulation has been widely used in the investigations of adsorption and separation of MOFs since it can describe the adsorption and separation process at the microscopic level. This paper reviews the recent advances in computational simulations for the adsorption and separation of low-carbon hydrocarbons by metal-organic frameworks. The difficulties and future developments in the study of adsorption and separation of low carbon hydrocarbons by metal-organic frameworks have also been discussed.

()
图1 GCMC模拟C2H2在SD/Co3a上的优先结合位点[38]
Fig. 1 The preferential C2H2 binding sites for SD/Co3a simulated using GCMC[38]
图2 计算模拟结果表明,(a) C2H6和(b) C2H4在MAF-49中的优先吸附位点。 (c) C2H6和(d) C2H4对应的主客交互的示意图。强(H…N/O<2.3 Å)、弱(2.3 Å<H…N/O<2.8 Å)和几乎可以忽略的(H…N/O<2.8 Å) C-H…N相互作用分别以红、蓝、黑虚线表示[26]
Fig. 2 Preferential adsorption sites for (a) C2H6 and (b) C2H4 in MAF-49 revealed by computational simulations. Schematic representation of the corresponding host-guest interactions for (c) C2H6 and (d) C2H4. Strong (H…N/O<2.3 Å), weak (2.3Å<H…N/O<2.8 Å) and almost negligible (H…N/O<2.8 Å) C-H…N interactions are displayed as red, blue and black dashed lines, respectively[42]
图3 DFT优化后的C2H2 (a)和C2H4 (b)在TIFSIX-2-Ni-i中的吸附构型示意图,为了清晰起见,不同的网采用蓝色和绿色高亮显示。Si,黄色;F,红色;Ni,紫色[48]
Fig. 3 Schematic pictures showing the DFT optimized C2H2 (a) and C2H4 (b) adsorption configurations in TIFSIX-2-Ni-i, the different nets are highlighted in blue and green color for clarity. Color code: Si, yellow; F, red; Ni, purple[48]
图4 DFT-D计算轻烃(C2H2, C2H4, C2H6)在Ca(环丁烯)中的吸附结合位点。(a)乙炔与Ca(环丁烯)通过π-π和“Hδ+…Oδ-”多重范德华相互作用。(b) C2H4与框架通过π-π相互作用交互距离(3.534 Å和3.586 Å)。(c) C2H6与优化结构通过“Hδ+…Oδ-”多个范德华相互作用(2.809 Å到3.613 Å)。C,灰色;Ca,蓝色;O,紫色;H,浅蓝色[49]
Fig. 4 DFT-D calculated light hydrocarbons (C2H2, C2H4, C2H6) adsorption binding sites in Ca (squarate). (a) C2H2 interacts with Ca (squarate) through π-π and “Hδ+…Oδ-” multiple van der Waals interaction. (b) C2H4 interacts with the framework through π-π interactions with distances (3.534 Å and 3.586 Å). (c) C2H6 interacts with the optimized structure through “Hδ+…Oδ-” multiple van der Waals interaction (2.809 Å to 3.613 Å). C, gray; Ca, blue; O, purple; H, light blue[49]
图5 DFT-D计算得到C2H2在SIFSIX-1-Cu(a)、SIFSIX-2-Cu(b)、SIFSIX-2-Cu-i(c)中的吸附结合位点(为清晰起见,不同的网状结构以紫红色和绿色高亮显示)[9]
Fig. 5 DFT-D-calculated C2H2 adsorption binding sites in SIFSIX-1-Cu (a), SIFSIX-2-Cu (b), SIFSIX-2-Cu-i (c) (the different nets are highlighted in magenta and green for clarity)[9]
图6 Mg-MOF-74中丙烷(a)、丙烯(b)在100 kPa下的平衡快照[41]
Fig. 6 Equilibrium snapshots of propane (a), propylene (b) in Mg-MOF-74 at 100 kPa[41]
图7 (a,b) DFT-D计算了SIFSIX-3-Ni中C3H4吸附结合位点。(c) DFT-D计算了SIFSIX-1-Cu的C3H4吸附结合位点。(d) DFT-D对SIFSIX-2-Cu-i的C3H4吸附位点进行优化计算(不同的网以粉色和蓝绿色表示)。(颜色代码:F,红色;Si,浅蓝色;C,灰度-40%;H,灰度-25%;N,天蓝色;铜,紫色;Ni,亮绿色。C3H4分子中C原子的颜色用橙色突出显示)[58]
Fig. 7 (a,b) DFT-D calculated C3H4 adsorption binding sites in the SIFSIX-3-Ni. (c) DFT-D calculated C3H4 adsorption binding sites in the SIFSIX-1-Cu. (d) DFT-D calculated optimized C3H4 adsorption sites of the SIFSIX-2-Cu-i (The different nets are highlighted in pink and turquoise). (Color code: F, red; Si, light blue; C, gray-40%; H, gray-25%, N, sky blue; Cu, lavender; Ni, bright green. The color of the C atoms in the C3H4 molecule is highlighted by orange) [58]
图8 (a, b) ELM-12中两种空腔的示意图(Ⅰ和Ⅱ) (Cu,绿色;C,灰色;O,红色;S,黄色;F,亮绿色)。(c, d) 中子衍射晶体结构显示了C3D4分子(位点Ⅰ和Ⅱ)的优先结合位点及其与骨架的紧密接触[61]
Fig. 8 (a, b) Schematic diagrams of the two types of cavities (Ⅰ and Ⅱ) in ELM-12 (Cu, green; C, gray; O, red; S, yellow; F, light green). (c, d) Neutron diffraction crystal structure of ELM-12?C3D4 showing the preferential binding sites for C3D4 molecules (sites Ⅰ and Ⅱ) and their close contacts with the framework[61]
图9 ZU-62中丙炔和丙二烯的DFT-D计算结果。F,红色;Nb,深蓝色;C,灰度-40%;H,灰度-25%;O,亮绿色;N,青绿色;铜,黄色;F-F距离,范德华半径[63]
Fig. 9 The DFT-D calculated results of the propyne and propadiene within ZU-62. F: red, Nb: dark blue; C: gray-40%, H: gray-25%, O: bright green, N: turquiose, Cu: yellow; the F-F distance includes the Van der Waals radius[63]
[1]
宋芙蓉(Song F R), 戴伟(Dai W), 杨元一(Yang Y Y). 石油化工(Petrochemical Technology), 2004, ( 12):1117.
[2]
钱伯章(Qian B Z) . 中外能源(Sino-Global Energy), 2011, ( 06):62.
[3]
胡玉梅(Hu Y M) . 国际石油经济(International Petroleum Economics), 2005,13(3):20.
[4]
陈乐怡(Chen L Y) . 中外能源(Sino-Global Energy), 2009, ( 03):66.
[5]
杨中维(Yang Z W) . 石化技术(Petrochemical Industry Technology), 2013,20(2):32.
[6]
Chen J , Eldridge R B , Rosen E L , Bielawski C W . Aiche Journal, 2011,57(3):630.
[7]
罗睿(Luo R), 陈永强(Chen Y Q). 广州化工(Guangzhou Chemical Industry), 2018, ( 17):114.
[8]
Jin Y , Datye A K , Rightor E , Gulotty R , Waterman W , Smith M , Holbrook M , Maj J , Blackson J . Journal of Catalysis, 2001,203(2):292.
[9]
Cui X L , Chen K J , Xing H B , Yang Q W , Krishna R , Bao Z B , Wu H , Zhou W , Dong X L , Han Y , Li B , Ren Q L , Zaworotko M J , Chen B L . Science, 2016,353(6295):141 https://www.ncbi.nlm.nih.gov/pubmed/27198674

doi: 10.1126/science.aaf2458     URL     pmid: 27198674
[10]
Cui W G , Hu T L , Bu X H . Advanced Materials, 2019: 1806445.
[11]
Li T , Chen D L , Sullivan J E , Kozlowski M T , Johnson J K , Rosi N L . Chemical Science, 2013,4(4):1746.
[12]
Yu M H , Zhang P , Feng R , Yao Z Q , Yu Y C , Hu T L , Bu X H . ACS Applied Materials & Interfaces, 2017,9(31):26177 https://www.ncbi.nlm.nih.gov/pubmed/28737373

doi: 10.1021/acsami.7b06491     URL     pmid: 28737373
[13]
Li Y W , Xu J , Li D C , Dou J M , Yan H , Hu T L , Bu X H . Chemical Communications, 2015,51(75):14211. https://www.ncbi.nlm.nih.gov/pubmed/26256775

doi: 10.1039/c5cc05097a     URL     pmid: 26256775
[14]
Chaemchuen S , Zhou K , Yao C , Luo Z X , Verpoort F . Chinese Journal of Inorganic Chemistry, 2015,31(3):509.
[15]
厉晓蕾(Li X L), 陶硕(Tao S), 李科达(Li K D), 王亚松(Wang Y S), 王苹(Wang P), 田志坚(Tian Z J). 物理化学学报(Acta Physica Sinica), 2016,32(06):1495.
[16]
Ji Y J , Ding L F , Cheng Y Y , Zhou H , Yang S Y , Li F , Li Y Y . Journal of Physical Chemistry C, 2017,121(43):24104.
[17]
Zhong R Q , Yu X F , Meng W , Han S B , Liu J , Ye Y X , Sun C Y , Chen G J , Zou R Q . Chemical Engineering Science, 2018,184:85.
[18]
鄢慧君(Yan H J), 李彪(Li B), 蒋宁(Jiang N), 夏定国(Xia D G). 物理化学学报(Acta Physica Sinica), 2017,33(09):1781.
[19]
吴选军(Wu X J), 郑佶(Zheng J), 李江(Li J), 蔡卫权(Cai W Q). 物理化学学报(Acta Physica Sinica), 2013,29(10):2207.
[20]
Bogdan M . Commun. Math. Phys., 1974,37:221.
[21]
陈正隆(Cheng Z L), 徐为人(Xu W R), 汤立达(Tang L D). 分子模拟的理论与实践(The Theory And Practice Of Molecular Simulation). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2007. 49.
[22]
Nagy Á . Physics Reports. 1998,298(1):1.
[23]
Kryachko E S . International Journal of Quantum Chemistry., 1980,18:1029.
[24]
Walter J C , Barkema G T . Physica A: Statistical Mechanics and its Applications., 2015,418:78. https://www.ncbi.nlm.nih.gov/pubmed/25419039

doi: 10.1016/j.physa.2014.07.045     URL     pmid: 25419039
[25]
Geyer C J . Statistical Science, 1992,7:473.
[26]
Valleau J P , Cohen L K . The Journal of Chemical Physics, 1980,72(11):5935.
[27]
Rappe A K , Casewit C J , Colwell K S , Goddard W A , Skiff W M . Journal of the American Chemical Society, 1992,114(25):10024.
[28]
Mayo S L , Olafson B D , Goddard W A . Physical Chemistry Chemical Physics, 1990,94(26):8897
[29]
Jorgensen W L , Maxwell D S , Tiradorives J . Journal of the American Chemical Society, 1996,118(45):11225.
[30]
Allinger N L , Allinger N , Allinger N . Chemischer Informationsdienst, 1978,9:8127.
[31]
Allinger N L , Yuh Y H , Lii J H . J. Am. Chem. Soc, 1989,111:8551. https://pubs.acs.org/doi/abs/10.1021/ja00205a001

doi: 10.1021/ja00205a001     URL    
[32]
Mulliken R S . The Journal of Chemical Physics, 1955,23(10):1841.
[33]
Mulliken R S . The Journal of Chemical Physics, 1955,23(12):2338.
[34]
Mulliken R S . The Journal of Chemical Physics, 1955,23(10):1833.
[35]
Rappe A K , Goddard W A . Journal of Physical Chemistry, 1991,95:3358.
[36]
Li J R , Kuppler R J , Zhou H C . Chemical Society Reviews, 2009,38(5):1477. https://www.ncbi.nlm.nih.gov/pubmed/19384449

doi: 10.1039/b802426j     URL     pmid: 19384449
[37]
Zhang Y M , Li B Y , Krishna R , Wu Z L , Ma D X , Shi Z , Pham T , Forrest K , Space B , Ma S Q . Chemical Communications, 2015,51(13):2714. https://www.ncbi.nlm.nih.gov/pubmed/25575193

doi: 10.1039/c4cc09774b     URL     pmid: 25575193
[38]
Gao X , Zhang S S , Yan H , Li Y W , Liu Q Y , Wang X P , Tung C H , Ma H Y , Sun D . Crystengcomm, 2018,20(34):4905.
[39]
Lin R B , Li L B , Zhou H L , Wu H , He C H , Li S , Krishna R , Li J P , Zhou W , Chen B L . Nature Materials, 2018,17(12):1128. https://www.ncbi.nlm.nih.gov/pubmed/30397312

doi: 10.1038/s41563-018-0206-2     URL     pmid: 30397312
[40]
Chen Y W , Qiao Z W , Wu H X , Lv D F , Shi R F , Xia Q B , Zhou J , Li Z . Chemical Engineering Science, 2018,175:110.
[41]
Bao Z B , Alnemrat S , Yu L , Vasiliev I , Ren Q L , Lu X Y , Deng S G . Langmuir, 2011,27(22):13554. https://www.ncbi.nlm.nih.gov/pubmed/21942644

doi: 10.1021/la2030473     URL     pmid: 21942644
[42]
Liao P Q , Zhang W X , Zhang J P , Chen X M . Nature Communications, 2015,6(1):8697.
[43]
Li L B , Lin R B , Rajamani K , Li H , Xiang S C , Wu H , Li J P , Zhou W , Chen B L . Science, 2018,362(6413):443. https://www.ncbi.nlm.nih.gov/pubmed/30361370

doi: 10.1126/science.aat0586     URL     pmid: 30361370
[44]
Hao H G , Zhao Y F , Chen D M , Yu J M , Tan K , Ma S Q , Chabal Y , Zhang Z M , Dou J M , Xiao Z H , Gregory D , Zhou H C , Lu T B . Angewandte Chemie International Edition, 2018,57(49):16067. https://www.ncbi.nlm.nih.gov/pubmed/30338921

doi: 10.1002/anie.201809884     URL     pmid: 30338921
[45]
Hong X J , Wei Q , Cai Y P , Wu B B , Feng H X , Yu Y , Dong R F . ACS Applied Materials, 2017,9(34):29374. https://www.ncbi.nlm.nih.gov/pubmed/28792198

doi: 10.1021/acsami.7b10420     URL     pmid: 28792198
[46]
Fan C B , Gong L L , Huang L , Luo F , Krishna R , Yi X F , Zheng A M , Zhang L , Pu S Z , Feng X F , Luo M B , Guo G C . Angewandte Chemie International Edition, 2017,56(27):7900. https://www.ncbi.nlm.nih.gov/pubmed/28436067

doi: 10.1002/anie.201702484     URL     pmid: 28436067
[47]
Yao Z Z , Zhang Z J , Liu L Z , Li Z Y , Zhou W , Zhao Y F , Han Y , Chen B L , Krishna R , Xiang S C . Chemistry-A European Journal, 2016,22(16):5676. https://www.ncbi.nlm.nih.gov/pubmed/26934040

doi: 10.1002/chem.201505107     URL     pmid: 26934040
[48]
Jiang M D , Cui X L , Yang L F , Yang Q W , Zhang Z G , Yang Y W , Xing H B . Chemical Engineering Journal, 2018,352:803.
[49]
Li L Y , Guo L D , Pu S Y , Wang J W , Yang Q W , Zhang Z G , Yang Y W , Ren Q L , Alnemrat S , Bao Z B . Chemical Engineering Journal, 2018,358:446.
[50]
Hu T L , Wang H L , Li B , Krishna R , Wu H , Zhou W , Zhao Y F , Ha Y , Wang X , Zhu W D , Yao Z Z , Xiang S C , Chen B L . Nature Communications, 2015,6(1):7328.
[51]
Li J , Jiang L Y , Chen S , Kirchon A , Li B , Li Y S , Zhou H C . Journal of the American Chemical Society, 2019,141(9):3807. https://www.ncbi.nlm.nih.gov/pubmed/30773013

doi: 10.1021/jacs.8b13463     URL     pmid: 30773013
[52]
Lamia N , Jorge M , Granato M A , Almeida Paz F A , Chevreau H , Rodrigues A E . Chemical Engineering Science, 2009,64(14):3246.
[53]
Bae Y , Lee C Y , Kim K C , Farha O K , Nickias P , Hupp J T , Nguyen S T , Snurr R Q . Angewandte Chemie International Edition, 2012,51(8):1857. https://www.ncbi.nlm.nih.gov/pubmed/22250050

doi: 10.1002/anie.201107534     URL     pmid: 22250050
[54]
Kim S , Yoon T , Kang J H , Kim A , Kim T , Kim S , Park W , Kim K C , Bae Y . ACS Applied Materials & Interfaces, 2018,10(32):27521. https://www.ncbi.nlm.nih.gov/pubmed/30040880

doi: 10.1021/acsami.8b09739     URL     pmid: 30040880
[55]
Chen Y W , Qiao Z W , Lv D F , Duan C X , Sun X J , Wu H X , Shi R F , Xia B , Li Z . Chemical Engineering Journal, 2017,328:360.
[56]
Li L B , Lin R B , Wang X Q , Zhou W , Jia L T , Li J P , Chen B L . Chemical Engineering Journal, 2018,354:977.
[57]
Peng J J , Wang H , Olson D H , Li Z , Li J . Chemical Communications, 2017,53(67):9332. https://www.ncbi.nlm.nih.gov/pubmed/28783197

doi: 10.1039/c7cc03529b     URL     pmid: 28783197
[58]
Yang L F , Cui X L , Yang Q W , Qian S H , Wu H , Bao Z B , Zhang Z G , Ren Q L , Zhou W , Chen B L , Xing H B . Advanced Materials, 2018,30(10):1705374.
[59]
Yang L F , Cui X L , Zhang Y B , Yang Q W , Xing H B . Journal of Materials Chemistry A, 2018,6(47):24452.
[60]
Li L B , Wen H M , He C H , Lin R B , Krishna R , Wu H , Zhou W , Li J P , Li B , Chen B L . Advanced Materials, 2018,57(46):15183. https://www.ncbi.nlm.nih.gov/pubmed/30240522

doi: 10.1002/anie.201809869     URL     pmid: 30240522
[61]
Li L B , Lin R B , Krishna R , Wang X Q , Li B , Wu H , Li J P , Zhou W , Chen B L . Journal of the American Chemical Society, 2017,139(23):77336.
[62]
Wen H M , Li L B , Lin R B , Li B , Hu B , Zhou W , Hu J , Chen B L . Journal of Materials Chemistry A, 2018,6(16):6931.
[63]
Yang L F , Cui X L , Zhang Z Q , Yang Q W , Bao Z B , Ren Q L , Xing H B . Angewandte Chemie International Edition, 2018,57(40):13145. https://www.ncbi.nlm.nih.gov/pubmed/30110128

doi: 10.1002/anie.201807652     URL     pmid: 30110128
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[10] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[11] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[12] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[13] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[14] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[15] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.