English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 459-466 DOI: 10.7536/PC170132 前一篇   后一篇

• 综述 •

纳米金三角片的合成及应用

方维娜1,2, 鲁爽1,2, 王丽华1, 樊春海1, 柳华杰1*   

  1. 1. 中国科学院上海应用物理研究所物理生物学室 上海光源生物成像中心 中国科学院微观界面物理与探测重点实验室 上海 201800;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2017-01-22 修回日期:2017-03-11 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 柳华杰 E-mail:liuhuajie@sinap.ac.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2013CB932803)、国家自然科学基金项目(No.21473236,31371015)和中国科学院青年创新促进会资助

Synthesis and Applications of Triangular Gold Nanoplates

Weina Fang1,2, Shuang Lu1,2, Lihua Wang1, Chunhai Fan1, Huajie Liu1*   

  1. 1. CAS Key Laboratory of Interfacial Physics and Technology, Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-01-22 Revised:2017-03-11 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Basic Research Program of China (No.2013CB932803),the National Natural Science Foundation of China (No.21473236,31371015) and the Youth Innovation Promotion Association CAS.
近年来,非球形贵金属纳米颗粒因其结构与性质的独特性,已越发受到研究人员的关注。其中,纳米金三角片结构具有各向异性的表面能与表面等离子体共振特性,对发展新一代光子学与电子学器件具有重要意义。然而,相比普通球形纳米粒子,纳米金三角片的可控合成具有更大的难度。通过近十几年的努力,无论是在提高纳米金三角片的质量还是产量上,都有了显著的进步。基于此,本文分别从纳米金三角片的合成方法、生长机理、分离纯化以及其性质与应用等方面作系统介绍,希望该新材料能获得更多的关注。随着自组装技术的发展,纳米金三角片将是非常具有优势的一种组装模块,希望其能在化学、材料等领域发挥更大的作用。
Colloidal metal nanoparticles are emerging as key materials because of their localized surface plasmon resonance (LSPR) property and the enormous applications in catalysis, plasmonics, sensing, and photonics. Anisotropic nanoparticles have attracted increasing attention due to the novel and unusual chemical and physical behavior along with the decreased symmetry. In the case of the anisotropic nanoparticles, triangular gold nanoplates stand out owing to their unique shape and excellent LSPR properties, which is of great significance to develop a new generation of photonic and electronic devices. However, compared with the spherical nanoparticles, the controllable synthesis of triangular gold nanoplates is much more difficult. Therefore, numerous efforts have been put into their controlled synthesis and a variety of methods have been developed successfully, providing opportunities for the better use of this new material. In this review, we highlight the synthetic achievements, the shape-directing mechanism and separation methods of triangular gold nanoplates. We also address the recent breakthroughs of Au triangular structures in constructing anisotropic superlattices and taking advantage of their enhanced electromagnetic field for single-molecular fluorescence detection and surface-enhanced Raman scattering. Finally, with the development of the self-assembly technology, we believe that Au triangular nanoplates are powerful building blocks for the bottom-up materials engineering and it will play a more important role in chemistry, materials and other fields.
Contents
1 Introduction
2 Synthesis of triangular nanoplates
2.1 Chemical or biological reduction methods
2.2 Microwave, ultrasound and light-assisted techniques
3 Mechanisms of crystal growth
4 Various separation methods
4.1 Separation by "bottom-up" method
4.2 Separation by "top-down" method
5 Properties and applications
6 Conclusion

中图分类号: 

()
[1] Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y. Angew. Chem. Int. Ed., 2012, 51:5629.
[2] Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C. Angew. Chem. Int. Ed., 2016, 128:8168.
[3] Christopher P, Xin H, Linic S. Nature Chem., 2011, 3:467.
[4] Zan G, Wu Q. Adv. Mater., 2016, 28:2099.
[5] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112:2739.
[6] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107:668.
[7] Millstone J E, Hurst S J, Métraux G S, Cutler J I, Mirkin C A. Small, 2009, 5:646.
[8] Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Science, 2001, 294:1901.
[9] Lee K E, Hesketh A V, Kelly T L. Phys. Chem. Chem. Phys., 2014, 16:12407.
[10] Lohse S E, Murphy C J. Chem. Mater., 2013, 25:1250.
[11] Milligan W O, Morriss R H. J. Am. Chem. Soc., 1964, 86:3461.
[12] Nelayah J, Kociak M, Stephan O, Garcia de Abajo F J, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan L M, Colliex C. Nature Phys., 2007, 3:348.
[13] Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov N A, Liz-Marzan L M. Langmuir, 2002, 18:3694.
[14] Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D, Bridges F, Van Buuren A. J. Phys. Chem. B, 2002, 106:7005.
[15] Millstone J E, Park S, Shuford K L, Qin L, Schatz G C, Mirkin C A. J. Am. Chem. Soc., 2005, 127:5312.
[16] Millstone J E, Métraux G S, Mirkin C A. Adv. Func. Mater., 2006, 16:1209.
[17] Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Chem. Mater., 2005, 17:5558.
[18] Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q. Nano Lett., 2014, 14:7201.
[19] Scarabelli L, Coronado-Puchau M, Giner-Casares J J, Langer J, Liz-Marzan L M. ACS Nano, 2014, 8:5833.
[20] Wang G, Tao S, Liu Y, Guo L, Qin G, Ijiro K, Maeda M, Yin Y. Chem. Commun., 2016, 52:398.
[21] Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente J M. Langmuir, 2012, 28:8965.
[22] Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Nature Mater., 2004, 3:482.
[23] Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. J. Phys. Chem. B, 2005, 109:15256.
[24] Brown S, Sarikaya M, Johnson E. J. Mol. Biol., 2000, 299:725.
[25] Shao Y, Jin Y, Dong S. Chem. Commun., 2004, 9:1104.
[26] Tsuji M, Hashimoto M, Nishizawa Y, Tsuji T. Chem. Lett., 2003, 32:1114.
[27] Li C, Cai W, Li Y, Hu J, Liu P. J. Phys. Chem. B, 2006, 110:1546.
[28] Tangeysh B, Moore Tibbetts K, Odhner J H, Wayland B B, Levis R J. Nano Lett., 2015, 15:3377.
[29] Zhai Y, DuChene J S, Wang Y C, Qiu J, Johnston-Peck A C, You B, Guo W, DiCiaccio B, Qian K, Zhao E W, Ooi F, Hu D, Su D, Stach E A, Zhu Z, Wei W D. Nature Mater., 2016, 15:889.
[30] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13:1389.
[31] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37:1783.
[32] Rai A, Singh A, Ahmad A, Sastry M. Langmuir, 2006, 22:736.
[33] Ha T H, Koo H J, Chung B H. J. Phys. Chem. C, 2007, 111:1123.
[34] Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Nano Lett., 2008, 8:2526.
[35] Lohse S E, Burrows N D, Scarabelli L, Liz-Marzan L M, Murphy C J. Chem. Mater., 2014, 26:34.
[36] Magnussen O M. Chem. Rev., 2002, 102:679.
[37] Khanal B P, Zubarev E R. J. Am. Chem. Soc., 2008, 130:12634.
[38] Millstone J E, Georganopoulou D G, Xu X, Wei W, Li S, Mirkin C A. Small, 2008, 4:2176.
[39] Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. J. Colloid Interface Sci., 2010, 348:29.
[40] Ha T H, Kim Y J, Park S H. Chem. Commun., 2010, 46:3164.
[41] Young K L, Jones M R, Zhang J, Macfarlane R J, Esquivel-Sirvent R, Nap R J, Wu J, Schatz G C, Lee B, Mirkin C A, Proc. Natl. Acad. Sci. U. S. A., 2012, 109:2240.
[42] Liu R, Zhou J H, Zhou Z K, Jiang X, Liu J, Liu G, Wang X H. Nanoscale, 2014, 6:13145.
[43] Zhang F, Zhu J, An H Q, Li J J, Zhao J W. J. Mater. Chem. C, 2016, 4:568.
[44] Jones M R, Mirkin C A. Angew. Chem. Int. Ed., 2013, 52:2886.
[45] Hao M, Liu C, Peng L, Li J, Lu W, Jiang L. J. Colloid Interface Sci., 2015, 437:311.
[46] Beeram S R, Zamborini F P. ACS Nano, 2010, 4:3633.
[47] Huergo M A, Maier C M, Castez M F, Vericat C, Nedev S, Salvarezza R C, Urban A S, Feldmann J. ACS Nano, 2016, 10:3614.
[48] Zhou Y, Zhou X, Park D J, Torabi K, Brown K A, Jones M R, Zhang C, Schatz G C, Mirkin C A. Nano Lett., 2014, 14:2157.
[49] Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A. Nature Mater., 2010, 9:913.
[50] Radha B, Senesi A J, O'Brien M N, Wang M X, Auyeung E, Lee B, Mirkin C A. Nano Lett., 2014, 14:2162.
[51] Hong S, Shuford K L, Park S. Chem. Mater., 2011, 23:2011.
[52] Qin F, Zhao T, Jiang R, Jiang N, Ruan Q, Wang J, Sun L D, Yan C H, Lin H Q. Adv. Opt. Mater., 2016, 4:76.
[53] Shuford K L, Ratner M A, Schatz G C. J. Chem. Phys., 2005, 123:114713.
[54] Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B. Nano Lett., 2010, 10:4952.
[55] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mullen K, Moerner W E. Nature Photon., 2009, 3:654.
[56] 贾思思(Jia S S), 晁洁(Chao J), 樊春海(Fan C H), 柳华杰(Liu H J). 化学进展(Progress in Chemistry), 2014, 26(05):695.
[57] Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf Kurt V, Fan C. J. Am. Chem. Soc., 2013, 135:696.
[58] Dong Y, Yang Z, Liu D. Acc. Chem. Res., 2014, 47:1853.
[1] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[2] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[3] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[4] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[5] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[6] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[7] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[8] 赵兵, 祁宁, 张克勤. 等离子体增强上转换发光及其应用[J]. 化学进展, 2016, 28(11): 1615-1625.
[9] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[10] 宋春元, 陈文蔷, 杨琰君, 杨博玥, 苏邵, 汪联辉. 基于SERS探针技术的细胞识别、成像与诊疗[J]. 化学进展, 2015, 27(1): 91-102.
[11] 宋春元, 杨琰君, 汪联辉. 基于SERS技术的核酸检测[J]. 化学进展, 2014, 26(09): 1516-1526.
[12] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[13] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[14] 陶琴, 董健, 钱卫平*. 表面增强拉曼光谱在定量分析中的应用[J]. 化学进展, 2013, 25(06): 1031-1041.
[15] 朱明山, 陈鹏磊*, 刘鸣华*. 银/卤化银:一类新型等离子体光催化剂[J]. 化学进展, 2013, 25(0203): 209-220.
阅读次数
全文


摘要

纳米金三角片的合成及应用