English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1380-1391 DOI: 10.7536/PC171234 前一篇   后一篇

• 综述 •

金纳米星的制备、表面修饰及其在生物医学领域的应用研究

曹小卫1,3*, 陈帅1, 鲍敏1,2,3, 史宏灿1,2,3*, 李巍1,3   

  1. 1. 扬州大学医学院 转化医学研究中心 扬州 225001;
    2. 扬州大学医学院 江苏省非编码RNA基础与临床转化重点实验室 扬州 225001;
    3. 扬州大学医学院 江苏省中西医结合老年病防治重点实验室 扬州 225001
  • 收稿日期:2017-12-22 修回日期:2018-04-29 出版日期:2018-09-15 发布日期:2018-06-28
  • 通讯作者: 曹小卫, 史宏灿 E-mail:cxw19861121@163.com;shihongcan@yzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.81701825,81770018)、江苏省高校自然科学研究面上项目(No.17KJB416012)和江苏省博士后科研资助计划(No.1701141C)资助

Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields

Xiaowei Cao1,3*, Shuai Chen1, Min Bao1,2,3, Hongcan Shi1,2,3*, Wei Li1,3   

  1. 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
    2. Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China;
    3. Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
  • Received:2017-12-22 Revised:2018-04-29 Online:2018-09-15 Published:2018-06-28
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81701825, 81770018), the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.17KJB416012), and the Postdoctoral Science Foundation in Jiangsu Province (No.1701141C).
随着纳米技术的飞速发展,复杂三维结构的金纳米星已成为一种新型纳米材料。金纳米星具有独特的物理化学性质,如可调制的LSPR光学特性、SERS效应、光热特性、较大的比表面积等,这些性质使其在纳米材料和生物医学领域具有极高的潜在应用价值。本文首先介绍了金纳米星独特的光学性质,并对这些光学特性的理论基础进行解释;接着对近年来国内外制备金纳米星的主要方法进行阐述,主要包括种子介导生长法和一步合成法,这两种制备方法均存在各自的优缺点。在功能化的探针构筑方面,金纳米星的表面修饰主要包括两种方法:二氧化硅包裹金纳米星和高分子聚合物或生物分子修饰金纳米星。在应用方面,本文对金纳米星在生物分子检测、医学成像、肿瘤的诊断与光热治疗、药物传输和控制释放方面的最新研究进展进行了总结。最后,对目前金纳米星探针在制备和应用中存在的一些问题进行了探讨,并展望了该领域未来的研究内容和方向。
Au nanostars (AuNSs) with the complex three-dimensional structure have become a new type of nanomaterials with a rapid development of nanotechnology. AuNSs have unique physical and chemical properties such as tunable optical properties of localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS) effect, photothermal properties, and the large surface-to-volume ratio. For this reason, there's great potential for their applications in the fields of nanomaterials and biomedicine. In this article, we firstly evaluate the optical properties of AuNSs and explain their theoretical basis. Then two main methods of preparing AuNSs in recent years are summarized, including seed-mediated synthesis method and one-step method. At the same time, a discussion of the merits and drawbacks of each method is also made. In terms of functionalized probes' assembly, two principal ways of surface modifications are introduced, including silica-coated AuNSs and modification of AuNSs using polymer or biomolecules. In the way of application, the recent progress of AuNSs applied in biomolecular detection, medical imaging, diagnosis and photothermal therapy of tumors, delivery and controlled release of drug is reviewed. In the end, we discuss some problems in the preparation and application of AuNSs. What's more, the future research content and research direction in this field are prospected.
Contents
1 Introduction
2 Optical properties of Au nanostars and their theoretical basis
3 Preparation of Au nanostars
3.1 Seed-mediated growth method
3.2 One-step method
4 Surface modifications of Au nanostars
4.1 Silica-coated Au nanostars
4.2 Modification of Au nanostars using polymer or biomolecules
5 Applications of Au nanostars in biomedical field
5.1 Biomolecular detection
5.2 Medical imaging
5.3 Diagnosis and photothermal therapy of tumors
5.4 Delivery and controlled release of drug
6 Conclusion and outlook

中图分类号: 

()
[1] Daniel M C, Astruc D. Chem. Rev., 2004, 104:293.
[2] Sun Y G, Xia Y N. Science, 2002, 298:2176.
[3] Lee S J, Morrill A R, Moskovits M. J. Am. Chem. Soc., 2006, 128:2200.
[4] Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. Inorg. Chem., 2006, 45:7544.
[5] Xie J, Lee J Y, Wang D I, Ting Y P. Small, 2007, 3:672.
[6] Chen S, Wang Z L, Ballato J, Foulger S H, Carroll D L. J. Am. Chem. Soc., 2003, 125:16186.
[7] Shao L, Susha A S, Cheung L S, Sau T K, Rogach A L, Wang J F. Langmuir, 2012, 28:8979.
[8] Chirumamilla M, Chirumamilla A, Roberts A S, Zaccaria R P, Angelis F D, Kristensen P K, Krahne R, Bozhevolnyi S I, Pedersen K, Toma A. Adv. Optical Mater., 2017, 5:1600836.
[9] Rodr Díguez-Lorenzo R, Alvarez-Puebla R A, Garc Día de Abajo F J, Liz-Marzán L M. J. Phys. Chem. C, 2010, 114:7336.
[10] Link S, EI-Sayed M A. J. Phys. Chem. B, 1999, 103:3073.
[11] Nelayah J, Kociak M, Stéphan O, García de Abajo F J, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán L M, Colliex C. Nat. Phys., 2007, 3:348.
[12] Senthil K P, Pastoriza-Santos I, Rodríguez-González B, Javier García de A F, Liz-Marzán L M. Nanotechnology, 2008, 19:015606.
[13] Eanmaire D L, Van Duyne R P. Electroanal. Chem., 1977, 84:1.
[14] Moskovits M. Rev. Mod. Phys., 1985, 57:783.
[15] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys-Conden. Mat., 2002, 14:597.
[16] Yong I P, Hyungsoon I, Hakho L. ACS Bioconj. Chem., 2015, 26:1470.
[17] Rodríguez-Lorenzo L, ílvarez-Puebla R A, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán L M, Garc Día de Abajo F J. J. Am. Chem. Soc., 2009, 131:4616.
[18] Barbosa S, Agrawal A, Rodr Díguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla R A, Kornowski A, Weller H, Liz-Marzan L M. Langmuir, 2010, 26:14943.
[19] Zhu J, Liu M J, Li J J, Zhao J W. Eur. Phys. J. B, Spectrosc., 2009, 40:86.
[20] Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H Z, Zhang H, Yang B. J. Phys. Chem. C, 2011, 115:3630.
[21] Nalbant Esenturk E, Hight Walker A R. J. Raman Spectrosc., 2009, 40:86.
[22] Minati L, Benetti F, Chiappini Andrea, Speranz G. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 441:623.
[23] Su Q Q, Ma X Y, Dong J, Jiang C Y, Qian W P. ACS Appl. Mater. Interfaces, 2011, 3:1873.
[24] Chen L X, Lv J J, Wang A J, Huang H, Fen J J. Sensor Actuat. B-Chem., 2016, 222:937.
[25] Rodr Díguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla R A, Liz-Marzán L M, Priorc I A, Brust M. Integr. Biol., 2011, 3:922.
[26] Atta S, Tsoulos T V, Fabris L. J. Phys. Chem. C, 2016, 120:20749.
[27] Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S. Nanotechnology, 2011, 22:055702.
[28] Jokerst J V, Miao Z, Zavaleta C, Cheng Z, Gambhir S S. Small, 2011, 7:625.
[29] Slomiany M G, Dai L, Tolliver L B, Grass G D, Zeng Y P, Toole B P. Clin. Cancer Res., 2009, 15:7593.
[30] Hu C F, Liu Y L, Qin J L, Nie G T, Lei B F, Xiao Y, Zheng M T, Rong J H. ACS Appl. Mater. Inter., 2013, 5:4760.
[31] Leonard K, Ahmmad B, Okamura H, Kurawaki J. Colloid. Surface B, 2017, 82:391.
[32] Wang Y, Yan B, Chen L X. Chem. Rev., 2012, 113:1391.
[33] Fales A M, Liu Y, Fales A M, Li Y L, Liu J, Vo-Dinh T. Anal. Chem., 2013, 85:208.
[34] Xie J P, Zhang Q B, Lee J Y, Wang D I C. ASC Nano, 2008, 2:2473.
[35] Dondapati S K, Sau T K, Hrelescu C, Klar T A, Stefani F D, Feldmann J. ACS Nano, 2010, 4:6318.
[36] Spadavecchia J, Barras A, Lyskawa J, Woisel P, Laure W, Pradier C M, Boukherroub R, Szunerits S. Anal. Chem., 2013, 85:3288.
[37] Li A, Tang L J, Song D, Song S S, Ma W, Xu L G, Kuang H, Wu X L, Liu L Q, Chen X, Xu C L. Nanoscale, 2016, 8:1873.
[38] Kang B, Austin L A, El-Sayed M A. ACS Nano, 2014, 8:4883.
[39] Cao X W, Shan Y B, Tan L Q, Yu X, Bao M, Li W, Shi H C. J. Mater. Chem. B, 2017, 5:5983.
[40] Liu Y, Yuan H K, Kersey F R, Register J K, Parrott M C, Vo Dinh T. Sensors, 2015, 15:3706.
[41] Li M, Banerjee S R, Zheng C, Pomper M G, Barman I. Chem. Sci., 2016, 7:6779.
[42] Dinish U S, Balasundaram G, Chang Y T, Olivo M. Sci. Rep., 2014, 4:4075.
[43] Beqa L, Fan Z, Singh A K, Senapati D, Ray P C. ACS Appl. Mater. Interfaces, 2011, 3:3316.
[44] Cao X W, Shi C W, Lu W B, Zhao H, Wang M, Zhang M Y, Chen X, Dong J, Han X D, Qian W P. J. Nanosci. Nanotechnol., 2016, 16:12161.
[45] Chen M L, Gao Z W, Chen X M, Pang S C, Zhang Y. Talanta, 2018, 182:433.
[46] Chen J, Sheng Z H, Li P H, Wu M X, Zhang N S, Yu X F, Wang Y W, Hu D H, Zheng H R, Wang G P. Nanoscale, 2017, 9:11888.
[47] Liu Y, Ashton J R, Moding E J, Yuan H K, Register J K, Fales A M, Choi J, Whitley M J, Zhao X G, Qi Y, Ma Y, Vaidyanathan G, Zalutsky M R, Kirsch D G, Badea C T, Vo Dinh T. Theranostics, 2015, 5:946.
[48] Paris J L, Mannaris C, Victoria Cabañas M, Carlisle R, Manzano M, Vallet-Regí M, Coussiosc C C. Chem. Eng. J., 2018, 340:2.
[49] Kumari S, Singh R P. Int. J. Biol. Macromol., 2012, 50:878.
[50] Dama D H M, Culverb K S B, Kandela I, Lee R C, Chandra K, Lee H, Mantisc C, Ugolkov A, Mazar A P, Odom T W. Nanomed-Nanotechnol., 2015, 11:671.
[51] Wang F Y, Sun Q Q, Feng B, Xu Z A, Zhang J Y, Xu J, Lu L L, Yu H J, Wang M W, Li Y P, Zhang W. Adv. Healthc. Mater., 2016, 5:2227.
[52] An J, Yang X Q, Cheng K, Song X L, Zhang L, Li C, Zhang X S, Xuan Y, SongY Y, Fang B Y, Hou X L, Zhao Y D, Liu B. ACS Appl. Mater. Interfaces, 2017, 9:41748.
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[3] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[4] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[7] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[8] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[9] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[10] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[11] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[12] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[13] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[14] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[15] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.