English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1143-1159 DOI: 10.7536/PC131205 前一篇   后一篇

• 综述与评论 •

表面等离子体共振传感技术和生物分析仪

王晓萍*, 洪夏云, 詹舒越, 黄子昊, 庞凯   

  1. 浙江大学光电信息工程学系 现代光学仪器国家重点实验室 杭州 310027
  • 收稿日期:2013-12-01 修回日期:2014-01-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 王晓萍 E-mail:xpwang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.61036012,21277118)资助

Surface Plasmon Resonance Sensing Technology and Bioanalytical Instrument

Wang Xiaoping*, Hong Xiayun, Zhan Shuyue, Huang Zihao, Pang Kai   

  1. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2013-12-01 Revised:2014-01-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 61036012, 21277118)

表面等离子体共振(surface plasmon resonance, SPR)传感技术是生物化学分析领域常用的分析手段和研究工具,与其相关的研究不计其数,发展日新月异。本研究小组从事SPR传感技术研究近十年,从初期的理论研究、仿真计算、传感器设计以及全自动SPR生物分析仪开发与应用研究,到目前的传感器性能提高、应用拓展,时刻关注着该项技术的最新动态。本文系统综述了SPR传感技术和生物分析仪的原理、结构以及主要功能模块,SPR传感器的调制类型、耦合方式以及SPR成像传感器;介绍了结合局域表面等离子体共振(local surface plasmon resonance, LSPR)技术、改进金属膜系设计、优化数据处理算法等提高SPR生物分析仪性能的方法;阐述了SPR传感技术和生物分析仪的最新进展,包括SPR技术和微流控芯片、电化学技术、表面增强拉曼散射技术(SERS)的联用;列举了SPR生物分析仪在临床诊断、药物筛选、生物分子研究、食品安全和环境监测等领域的应用实例;最后,分析了SPR生物分析仪面临的主要问题以及未来的发展趋势。

Surface plasmon resonance (SPR) biosensor technology, with countless researches and attractive progress, has been commonly applied in the field of biochemical analysis. From theoretical research to design and produce of bioanalytical instrument, application development and performance improvement, our research team has been engaged in SPR study for almost 10 years and always concerned about the latest progress. This paper mainly includes: the description of principle, components and accessories of SPR bioanalytical instrument, modulation types and coupling configurations of SPR sensor, as well as SPR imaging sensor; the methods for improving the bioanalytical instrument performance, namely, the combination with local surface plasmon resonance (LSPR) technology, metal film redesign and data processing optimization; the lasted developments, involving the technology combination between the SPR and microfluidic chip, electrochemistry, surface-enhanced raman scattering (SERS); the applications in clinical diagnosis, drugscreening, human biomolecular research, food safety and environmental monitoring; and the main problems and future trends of SPR bioanalytical instrument.

Contents
1 Introduction
2 SPR bioanalytical instrument
2.1 Principle of SPR
2.2 SPR instrument
3 SPR sensors
3.1 Modulation types
3.2 Coupling configurations
3.3 SPR imaging sensors
4 Performance improvement mothods of SPR biosensors
4.1 Local surface plasmon resonance
4.2 Metal film
4.3 Data processing
5 The developments of SPR biosensors
5.1 SPR combined with microfluidic chip
5.2 SPR combined with electrochemical
5.3 SPR combined with SERS
6 Applications
7 Conclusions and prospects

中图分类号: 

()

[1] Shankaran D R, Gobi K V A,Miura N. Sensors and Actuators B-Chemical, 2007, 121: 158.
[2] Rich R L,Myszka D G. Journal of Molecular Recognition, 2008, 21: 355.
[3] Zhan S, Wang X, Luo Z, Zhou H, Chen H,Liu Y. Sensors and Actuators B-Chemical, 2011, 153: 427.
[4] Zhou X, Chen H, Zhan S, Wang X, Ou H,Luo Z. Chinese Journal of Sensors and Actuators, 2011, 24: 1794.
[5] Wang X, Zhan S, Luo Z, Zhou H. Acta Optica Sinica, 2012, 32: 02120051.
[6] Ferrari L, Šípová H, Tich Dý I, Chadt K,Homola J. SPIE Optics+ Optoelectronics 2013. 87740F.
[7] Jang Y H, Chung K, Quan L N, Spackova B, Sipova H, Moon S, Cho W J, Shin H Y, Jang Y J, Lee J E, Kochuveedu S T, Yoon M J, Kim J, Yoon S, Kim J K, Kim D, Homola J,Kim D H. Nanoscale, 2013, 5: 12261.
[8] Piliarik M, Sipova H, Kvasnicka P, Galler N, Krenn J R,Homola J. Optics Express, 2012, 20: 672.
[9] Hegnerova K, Piliarik M, Steinbachova M, Flegelova Z, Cernohorska H,Homola J. Analytical and Bioanalytical Chemistry, 2010, 398: 1963.
[10] Fernandez F, Hegnerova K, Piliarik M, Sanchez-Baeza F, Homola J,Marco M P. Biosensors & Bioelectronics, 2010, 26: 1231.
[11] Wang S, Huang X, Shan X, Foley K J,Tao N. Analytical Chemistry, 2010, 82: 935.
[12] Wang S, Forzani E S,Tao N. Analytical Chemistry, 2007, 79: 4427.
[13] Wang W, Foley K, Shan X, Wang S, Eaton S, Nagaraj V J, Wiktor P, Patel U,Tao N. Nature Chemistry, 2011, 3: 249.
[14] Zhang X,Wang X. Opto-Electronic Engineering, 2007, 34: 63.
[15] Piliarik M,Homola J. Sensors and Actuators B-Chemical, 2008, 134: 353.
[16] Sun B, Wang X,Huang Z. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on. IEEE, 2010. 1599.
[17] Huang Z, Wang X, Zhan S, Liu X. Optical Engineering, 2012, 51: 094402.
[18] Homola J. Chemical Reviews, 2008, 108: 462.
[19] Briand V A, Thilakarathne V, Kasi R M, Kumar C V. Talanta, 2012, 99: 113.
[20] Piliarik M, Vala M, Tichy I,Homola J. Biosensors & Bioelectronics, 2009, 24: 3430.
[21] Gu J, Chen G, Cao Z, Shen Q. Journal of Physics D: Applied Physics, 2008, 41: 185105.
[22] Zhang Q, Wang Y, Mateescu A, Sergelen K, Kibrom A, Jonas U, Wei T,Dostalek J. Talanta, 2013, 104: 149.
[23] Jang H S, Park K N, Kang C D, Kim J P, Sim S J, Lee K S. Optics Communications, 2009, 282: 2827.
[24] Yanase Y, Araki A, Suzuki H, Tsutsui T, Kimura T, Okamoto K, Nakatani T, Hiragun T,Hide M. Biosensors & Bioelectronics, 2010, 25: 1244.
[25] Pollet J, Delport F, Janssen K P F, Tran D T, Wouters J, Verbiest T, Lammertyn J. Talanta, 2011, 83: 1436.
[26] Verma R,Gupta B D. Sensors and Actuators B-Chemical, 2013, 177: 279.
[27] Liu C, Cui D, Li H. Biosensors and Bioelectronics, 2010, 26: 255.
[28] Yu X, Wang D, Wei X, Ding X, Liao W,Zhao X. Sensors and Actuators B: Chemical, 2005, 108: 765.
[29] Yu X, Ding X, Liu F, Wei X,Wang D. Measurement Science and Technology, 2008, 19: 015301.
[30] Wang D, Ding L, Zhang W, Luo Z, Ou H, Zhang E, Yu X. Measurement Science and Technology, 2012, 23: 065701.
[31] Zhang W, Deng Y, Wang D, Ding L,Yu X. Chinese Journal of Scientific Instrument, 2011, 8: 011.
[32] Beusink J B, Lokate A, Besselink G A, Pruijn G J, Schasfoort R. Biosensors and Bioelectronics, 2008, 23: 839.
[33] Lokate A M C, Beusink J B, Besselink G A J, Pruijn G J M,Schasfoort R B M. Journal of the American Chemical Society, 2007, 129: 14013.
[34] Liu L, Chen X, Liu Z, Ma S, Du C, He Y,Guo J. Sensors and Actuators B-Chemical, 2012, 173: 218.
[35] Sepulveda B, Angelome P C, Lechuga L M,Liz-Marzan L M. Nano Today, 2009, 4: 244.
[36] Liu T, Li D, Yang D, Jiang M. Langmuir, 2011, 27: 6211.
[37] Hong X,Hall E A H. Analyst, 2012, 137: 4712.
[38] Kedem O, Tesler A B, Vaskevich A, Rubinstein I. ACS Nano, 2011, 5: 748.
[39] Im H, Lee S H, Wittenberg N J, Johnson T W, Lindquist N C, Nagpal P, Norris D J,Oh S H. ACS Nano, 2011, 5: 6244.
[40] Guan G, Liu B, Wang Z,Zhang Z. Sensors, 2008, 8: 8291.
[41] Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J,Willner I. Analytical Chemistry, 2011, 83: 3082.
[42] Wu Y C, Gu Z T. Acta Physica Sinica, 2008, 57: 2295.
[43] Chang C C, Chiu N F, Lin D S, Yu C S, Liang Y H,Lin C W. Analytical Chemistry, 2010, 82: 1207.
[44] Hu J, Wang X,Wen H. Optical Technology, 2004, 30: 643.
[45] Abbas A, Linman M J,Cheng Q. Analytical Chemistry, 2011, 83: 3147.
[46] Wang X, Jefferson M, Hobbs P C D, Risk W P, Feller B E, Miller R D, Knoesen A. Optics Express, 2011, 19: 107.
[47] Scarano S, Scuffi C, Mascini M,Minunni M. Biosensors & Bioelectronics, 2010, 26: 1380.
[48] Hou R, Wang Z, Diamond J J, Zheng Z, Zhu J, Wang Z, Chu B. Sensors and Actuators B-Chemical, 2011, 160: 951.
[49] Chen J, Chen Y, Xu J, Zhang Y,Liao T. Chemometrics and Intelligent Laboratory Systems, 2012, 114: 56.
[50] Huang Z, Wang X. Optical Engineering, 2013, 52: 044403.
[51] Krishnamoorthy G, Carlen E T, Bomer J G, Wijnperle D, Deboer H L, Van Den Berg A,Schasfoort R B M. Lab on a Chip, 2010, 10: 986.
[52] Krishnamoorthy G, Carlen E T, Deboer H L, Van Den Berg A,Schasfoort R B M. Analytical Chemistry, 2010, 82: 4145.
[53] Ouellet E, Lausted C, Lin T, Yang C W T, Hood L,Lagally E T. Lab on a Chip, 2010, 10: 581.
[54] Shan X, Patel U, Wang S, Iglesias R,Tao N. Science, 2010, 327: 1363.
[55] Foley K J, Shan X, Tao N. Ieee. Detecting molecules using a surface impedance imaging technique, 2009, p. 156.
[56] Wang W, Foley K, Shan X, Wang S P, Eaton S, Nagaraj V J, Wiktor P, Patel U,Tao N J. Nature Chemistry, 2011, 3: 249.
[57] Meyer S A, Le Ru E C, Etchegoin P G. Analytical Chemistry, 2011, 83: 2337.
[58] Meyer S A, Auguie B, Le R E C,Etchegoin P G. Journal of Physical Chemistry A, 2012, 116: 1000.
[59] Stine R, Robinson J T, Sheehan P E, Tamanaha C R. Advanced Materials, 2010, 22: 5297.
[60] Sendroiu I E, Gifford L K, Luptak A, Corn R M. Journal of the American Chemical Society, 2011, 133: 4271.
[61] Ananthanawat C, Vilaivan T, Hoven V P, Su X D. Biosensors & Bioelectronics, 2010, 25: 1064.
[62] Malic L, Veres T,Tabrizian M. Biosensors & Bioelectronics, 2009, 24: 2218.
[63] Pillet F, Sanchez A, Formosa C, Severac M, Trevisiol E, Bouet J Y, Leberre V A. Biosensors & Bioelectronics, 2013, 43: 148.
[64] Piliarik M, Bockova M, Homola J. Biosensors & Bioelectronics, 2010, 26: 1656.
[65] Hiragun T, Yanase Y, Kose K, Kawaguchi T, Uchida K, Tanaka S, Hide M. Biosensors & Bioelectronics, 2012, 32: 202.
[66] Riskin M, Tel-Vered R, Frasconi M, Yavo N,Willner I. Chemistry-A European Journal, 2010, 16: 7114.
[67] Lai T, Hou Q, Yang H, Luo X,Xi M. Acta Biochimica et Biophysica Sinica, 2010, 42: 787.
[68] Law W C, Yong K T, Baev A,Prasad P N. ACS Nano, 2011, 5: 4858.
[69] Krishnan S, Mani V, Wasalathanthri D, Kumar C V,Rusling J F. Angewandte Chemie International Edition, 2011, 50: 1175.
[70] Hegnerová K, Bockova M, Vaisocherová H, Krištofiková Z, ? í D? n Dý J, ? ípová D,Homola J. Sensors and Actuators B: Chemical, 2009, 139: 69.
[71] Xia N, Liu L, Harrington M G, Wang J, Zhou F. Analytical Chemistry, 2010, 82: 10151.
[72] Scarano S, Scuffi C, Mascini M,Minunni M. Analytica Chimica Acta, 2011, 707: 178.
[73] Treviño J, Calle A, Rodríguez-Frade J M, Mellado M,Lechuga L M. Clinica Chimica Acta, 2009, 403: 56.
[74] Kausaite-Minkstimiene A, Ramanaviciene A,Ramanavicius A. Analyst, 2009, 134: 2051.
[75] Frasconi M, Tortolini C, Botr Dè F,Mazzei F. Analytical Chemistry, 2010, 82: 7335.
[76] Büchele B, Zugmaier W, Lunov O, Syrovets T, Merfort I,Simmet T. Analytical Biochemistry, 2010, 401: 30.
[77] Small H, Gardner I, Jones H M, Davis J,Rowland M. Drug Metabolism and Disposition, 2011, 39: 1789.
[78] Das A, Zhao J, Schatz G C, Sligar S G,Van Duyne R P. Analytical Chemistry, 2009, 81: 3754.
[79] Golub E, Pelossof G, Freeman R, Zhang H,Willner I. Analytical Chemistry, 2009, 81: 9291.
[80] Ananthanawat C, Vilaivan T, Hoven V P, Su X. Biosensors and Bioelectronics, 2010, 25: 1064.
[81] Zhou W J, Chen Y,Corn R M. Analytical Chemistry, 2011, 83: 3897.
[82] Kim S A, Byun K M, Kim K, Jang S M, Ma K, Oh Y, Kim D, Kim S G, Shuler M L,Kim S J. Nanotechnology, 2010, 21: 355503.
[83] Špringer T, Piliarik M, Homola J. Sensors and Actuators B: Chemical, 2010, 145: 588.
[84] Šípová H, Zhang S, Dudley A M, Galas D, Wang K, Homola J. Analytical Chemistry, 2010, 82: 10110.
[85] Jose J, Chung J W, Jeon B J, Maas R M, Nam C H,Pyun J C. Biosensors and Bioelectronics, 2009, 24: 1324.
[86] Mazumdar S D, Barlen B, Kmpfer P,Keusgen M. Biosensors and Bioelectronics, 2010, 25: 967.
[87] Poltronieri P, De Blasi M, D'Urso O. Plant Soil Environ, 2009, 55: 363.
[88] Gnanaprakasa T J, Oyarzabal O A, Olsen E V, Pedrosa V A,Simonian A L. Sensors and Actuators B: Chemical, 2011, 156: 304.
[89] Yuan J, Sterckx Y, Mitchenall L A, Maxwell A, Loris R,Waldor M K. Journal of Biological Chemistry, 2010, 285: 40397.
[90] Tsai W C,Li I C. Sensors and Actuators B: Chemical, 2009, 136: 8.
[91] Gupta G, Singh P K, Boopathi M, Kamboj D, Singh B,Vijayaraghavan R. Thin Solid Films, 2010, 519: 1115.
[92] Puiu M, Istrate O, Rotariu L, Bala C. Analytical Biochemistry, 2012, 421: 587.
[93] Farré M, Martínez E, Ramón J, Navarro A, Radjenovic J, Mauriz E, Lechuga L, Marco M P,Barceló D. Analytical and Bioanalytical Chemistry, 2007, 388: 207.
[94] Mauriz E, Calle A, Manclus J, Montoya A, Hildebrandt A, Barceló D,Lechuga L M. Biosensors and Bioelectronics, 2007, 22: 1410.
[95] Chen H, Wang X, Zhan S, Luo Z,Zhou H. Instrumentation Science & Technology, 2011, 39: 462.
[96] Mcnamee S E, Elliott C T, Delahaut P,Campbell K. Environmental Science and Pollution Research, 2013, 20: 6794.
[97] Lin T J,Chung M F. Biosensors and Bioelectronics, 2009, 24: 1213.

[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[5] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[6] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[7] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[8] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[9] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[10] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[11] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[12] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[13] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[14] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[15] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.