English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1006-1015 DOI: 10.7536/PC160401 前一篇   后一篇

• 综述与评论 •

共价有机框架材料催化剂

付先彪1, 喻桂朋1,2*   

  1. 1. 中南大学 化学化工学院 长沙 410083;
    2. 大连理工大学 精细化工国家重点实验室 大连 116012
  • 收稿日期:2016-04-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 喻桂朋 E-mail:gilbertyu@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21204103,21376272)和湖南省自然科学-株洲市联合基金项目(No.20155015)资助

Covalent Organic Frameworks Catalysts

Fu Xianbiao1, Yu Guipeng1,2*   

  1. 1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
    2. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
  • Received:2016-04-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21204103,21376272),and the Joint Funds of Hunan Provincial Natural Science Foundation and Zhuzhou Municipal Government of China (No.2015JJ5015).
共价有机框架材料(covalent organic frameworks, COF)是功能材料领域研究的热点之一。COF具有孔道结构高度有序、孔径可调、比表面积较大、合成方法多样和易于功能化修饰等优点,是一类新兴的多相催化剂。目前,COF催化剂主要设计思路是:基于“自下而上”策略将非金属催化活性中心嵌入材料骨架来构筑本征型COF催化剂,或者以COF为载体,通过后修饰方式负载金属颗粒或离子构建多相催化剂。鉴于COF以上优势,预计COF催化剂在多相催化和手性催化领域中的应用也将取得更大的进展。本文综述了COF催化剂的合成和功能化策略,并展望了COF在多相催化领域中的应用前景。
Covalent organic frameworks (COF) arise as the new frontier among the enormous research efforts in functional materials. Due to their well-defined channel structure, tunable porosity, larger surface area, vast synthetic diversity and facile functionalization at the molecular level, COF has emerged as a matrix for heterogeneous catalysts. Such catalysts are generally constructed via the "bottom-up" strategies from building blocks. Utilizing a simple post- modification strategy, COF catalysts are prepared by loading metal particles or ions into the pores or interfaces. Benefiting from its structural superiority, COF catalysts with excellent catalytic activity will also make a great achievement. Here, this review focuses on recent advances of COF-functional catalysts, by briefly summarizing their synthetic strategies, targeted functionalization, and their perspectives in heterogeneous catalysis.

Contents
1 Introduction
2 Pd catalytic coupling reaction
2.1 Suzuki reaction
2.2 Sonogashira reaction
2.3 Heck reaction
3 Knoevenagel condensation
4 Redox reaction
5 Diels-Alder reaction
6 Michael addition
7 Solid acid catalysis reaction
8 Photocatalytic hydrogen production
9 Conclusion and outlook

中图分类号: 

()
[1] 徐如人(Xu R R),庞文琴(Pang W Q),于吉红(Yu J H),霍启升(Huo Q S),陈接胜(Chen J S). 分子筛与多孔材料化学(Chemistry-Zeolite and Porous Materials). 北京:科学出版社(Beijing:Science Press), 2004.
[2] Meng X J, Xiao F S. Chem. Rev., 2013, 114(2):1521.
[3] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112(2):673.
[4] Neil B M, Peter M B. Macromolecules, 2010, 43(12):5163.
[5] Davankov V A,Tsyurupa M P. React. Polym., 1990, 13(1/2):27.
[6] Zhang Y D, Zhu Y L, Guo J, Gu S, Wang Y Y, Fu Y, Chen D Y, Lin Y J, Yu G P, Pan C Y. Phys. Chem. Chem. Phys., 2016,18(16):11323.
[7] Xiong S H, Fu X, Xiang L, Yu G P, Guan J G, Wang Z G, Du Y, Xiong X, Pan C Y. Polym. Chem., 2014, 5(10):3424.
[8] McKeown N B, Budd P M. Chem. Soc. Rev., 2006, 35(8):675.
[9] Budd P M, Ghanem B S, Makhseed S,McKeown N B, Msayib K J, Tattershall C E. Chem. Commun., 2004,(2):230.
[10] Cooper A I. Adv. Mater., 2009, 21(12):1291.
[11] Jiang J X, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Cooper A I. Angew. Chem. Int. Ed., 2007, 46(45):8574.
[12] Feng X, Ding X, Jiang D L. Chem. Soc. Rev., 2012, 41(18):6010.
[13] Ding S Y, Wang W. Chem. Soc. Rev., 2012, 42(2):548.
[14] Cooper A I. Cryst. Eng. Comm., 2013, 15(8):1483.
[15] Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12):3053.
[16] Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751):1166.
[17] Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47:3450.
[18] Neil L C, Rob C, Lyndsey K R, Andrew I C. Chem. Mater., 2009, 21:204.
[19] Suman C, Sharath K, Bishnu P B, Binit L, Shrikant M K, Minakshi C, Ravichandar B, Thomas H, Rahul B. J. Am. Chem. Soc., 2013, 135(47):17853.
[20] Louis S, Andreas Z. Nature, 2001, 414:353.
[21] Sang S H, Hiroyasu F, Omar M Y, William A G. J. Am. Chem. Soc., 2008, 130:11580.
[22] 丁三元(Ding S Y). 兰州大学博士论文(Doctoral Dissertation of Lanzhou University), 2014.
[23] Guo J, Feng X, Yoshihito H, Guo J D, Shu S, Phornphimon M, Akinori S, Shigeru N, Jiang D L. Angew. Chem. Int. Ed., 2011, 50:1289.
[24] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133:19816.
[25] Hou Y X, Zhang X M, Sun J S, Lin S, Qi D D, Hong R R,Li D Q, Xiao X, Jiang J Z. Micropor. Mesopor. Mat., 2015, 214:108.
[26] Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134(48):19524.
[27] Pradip P, Manas K P, Sharath K, S M Shivaprasad, David D D, Rahul B. J. Mater. Chem. A, 2014, 2(21):7944.
[28] Mullangi D, Nandi S, Shalini S, Sreedhala S, Vinod C P, Vaidhyanathan R. Sci. Rep., 2015, 5:10876.
[29] Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem. Int. Ed., 2014, 53(11):2878.
[30] Shinde D B,Kandambeth S, Pachfule P, Kumar R R, Banerjee R. Chem. Commun., 2015, 51(2):310.
[31] Pachfule P, Kandambeth S,Diaz D D, Banerjee R.Chem. Commun., 2015, 50(24):3169.
[32] Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Science, 2015, 349(6253):1208.
[33] Zhang W J, Jiang P P, Wang Y, Zhang J, Zhang P B. Catal Sci. Technol., 2014, 1:101.
[34] Wu Y, Xu H, Chen X, Gao J, Jiang D L. Chem. Commun., 2015, 51(50):10096.
[35] Xu H, Chen X, Gao J, Lin J B, Matthew A, Stephan I, Jiang D L. Chem. Commun., 2014, 50(11):1292.
[36] Xu H, Gao J, Jiang D L. Nature Chem., 2015, 7(11):905.
[37] Peng Y W, Hu Z G, Gao Y J, Yuan D Q, Kang Z X, Qian Y H,Yan N, Zhao D. ChemSusChem.,2015, 8:3208.
[38] Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5(7):2789.
[39] Thote J, Aiyappa H B, Deshpande A, Díaz Díaz D, Kurungot S, Banerjee R. Chem. A Eur. J., 2014, 20(48):15961.
[1] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[2] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[3] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[4] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[5] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[6] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[7] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[8] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[9] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.
[10] 郭肖, 颜雅妮, 张亚红, 唐颐. 生物质衍生糖多相催化转化[J]. 化学进展, 2013, 25(11): 1915-1927.
[11] 龙金林, 顾泉, 张子重, 王绪绪. 固体催化剂活性中心的分子设计及其XAFS表征[J]. 化学进展, 2011, 23(12): 2417-2441.
[12] 白赢, 彭家建, 厉嘉云, 来国桥, 李小年. 多相硅氢加成催化剂的制备及应用[J]. 化学进展, 2011, 23(12): 2466-2477.
[13] 王春雷,马丁,包信和. 碳纳米材料及其在多相催化中的应用[J]. 化学进展, 2009, 21(09): 1705-1721.
[14] 刘华蓉,胡欣,杨松,苗伟峰,李梓超,张伟. 聚合物互通多孔材料的乳液模板法制备及其功能化研究*[J]. 化学进展, 2009, 21(04): 672-676.
[15] 李新,张维萍,李秀杰,刘盛林. 多相催化剂上烯烃交叉歧化反应*[J]. 化学进展, 2008, 20(0708): 1021-1031.
阅读次数
全文


摘要

共价有机框架材料催化剂