English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1016-1028 DOI: 10.7536/PC160201 前一篇   后一篇

• 综述与评论 •

金属有机骨架材料制备双金属或多金属催化材料及其应用

邱健豪1, 何明2, 贾明民1, 姚建峰1*   

  1. 1. 南京林业大学化学工程学院 南京 210037;
    2. 南京林业大学理学院 南京 210037
  • 收稿日期:2016-02-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 姚建峰 E-mail:jfyao@njfu.edu.cn
  • 基金资助:
    江苏省高校自然科学重大项目(No.15KJA220001)资助

Metal Organic Frameworks for Bi- and Multi-Metallic Catalyst and Their Applications

Qiu Jianhao1, He Ming2, Jia Mingmin1, Yao Jianfeng1*   

  1. 1. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
    2. College of Science, Nanjing Forestry University, Nanjing 210037, China
  • Received:2016-02-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the Natural Science Key Project of Jiangsu Higher Education Institutions (No.15KJA220001).
金属有机骨架(metal-organic framework,简称MOF)材料的研究在近几年相当热门,因其各种优异的性质,在催化领域得到广泛应用。然而,其本身作为催化剂的研究并不多且应用较为局限。但MOF材料规则的多孔结构及较大的比表面积为负载高分散金属纳米催化剂提供了天然的物理空间,能有效阻止金属纳米颗粒的团聚及浸出;使催化剂与反应物充分接触,有利于催化反应的进行,这也是近年来MOF材料作为催化剂的一个主要研究方向。本文着重讨论通过不同的方法将金属纳米颗粒负载在MOF材料上制备双金属或多金属催化剂并在催化领域的应用。重点介绍一锅合成法、化学吸附还原负载法、金属有机化学气相沉积法、固相研磨法等制备方法,较为详细地介绍了其在氧化(醇、烷烃、烯烃和CO氧化)、加氢(羰基类化合物和烯烃类化合物加氢)、Knoevenagel缩合、光催化(光催化降解有机物和光解水产氢)等反应中的应用,讨论了这类新型功能催化剂材料所存在的问题并对其进一步发展前景做出展望。
Metal organic frameworks (MOFs) are very popular materials and have been largely researched in recent years. They have extremely wide ranges of applications in catalysis because of their variety of excellent properties. However, the research of MOFs themselves as catalysts is limited, the regularly porous structure and large surface area of MOFs can provide a natural physical space for loading highly dispersed metal nanocatalyst, which prevents the aggregation and leaching of metal nanoparticals. This has also been the major research direction of MOF catalysts in the last few years. This review reports the preparation methods of loading metal nanoparticles on MOFs to form bi- and multi-metallic catalysts and their applications in catalysis. The preparation methods,such as one pot synthesis, adsorption-reduction method, metal organic chemical vapor deposition method and solid grinding method are highlighted, and their applications in oxidation (the oxidation of alcohols, alkanes, alkenes and CO), hydrogenation (the hydrogenation of carbonyl compounds and olefinic compounds), Knoevenagel condensation and photocatalytic reaction (photocatalytic degradation of organic compounds and light-driven water splitting to produce hydrogen) are discussed in detail. In addition,the existing problems and the development prospects of such bi- and multi-metallic catalysts are also addressed in this review.

Contents
1 Introduction
2 The preparation methods of bi- or multi-metallic catalyst
2.1 One pot synthesis
2.2 Adsorption-reduction method
2.3 Metal organic chemical vapor deposition
2.4 Solid Grinding
2.5 Other methods
3 The applications of bimetallic or multi-metal catalyst
3.1 Oxidation reaction
3.2 Hydrogenation reaction
3.3 Knoevenagel condensation
3.4 Photocatalytic reaction
4 Conclusion and outlook

中图分类号: 

()
[1] James S L. Chem. Soc. Rev., 2003, 32:276.
[2] Janiak C. Dalton Trans., 2003:2781.
[3] Rowsell J L C, Yaghi O M. Microporous Mesoporous Mater., 2004, 73:3.
[4] Ferey G. Chem. Soc. Rev., 2008, 37:191.
[5] Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127:17998.
[6] Yazaydin A O, Snurr R Q, Park T H, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Galloway D B, Low J J, Willis R R. J. Am. Chem. Soc., 2009, 131:18198.
[7] Yao J F, Wang H T. Chem. Soc. Rev., 2014, 43:4470.
[8] Yao J F, Dong D H, Li D, He L, Xu G S, Wang H T. Chem. Commun., 2011, 47:2559.
[9] He M, Yao J F, Low Z X, Yu D B, Feng Y, Wang H T. RSC Adv., 2014, 4:7634.
[10] Xu G S, Yao J F, Wang K, He L, Webley P A, Chen C S, Wang H T. J. Membr. Sci., 2011, 385:187.
[11] Corma A, Garcia H, Xamena F X L I. Chem. Rev., 2010, 110:4606.
[12] Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48:7502.
[13] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2012, 41:5262.
[14] Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P-N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R. Nat. Mater., 2010, 9:172.
[15] Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Chem. Rev., 2012, 112:1105.
[16] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G. J. Am. Chem. Soc., 2011, 133:4172.
[17] 张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K). 化学进展(Progress in Chemistry), 2015, 2:174.
[18] Liu Q, Low Z X, Li L X, Razmjou A, Wang K, Yao J F, Wang H T. J. Mater. Chem. A, 2013, 1:11563.
[19] Liu Q, Low Z X, Feng Y, Leong S, Zhong Z X, Yao J F, Hapgood K, Wang H T. Microporous Mesoporous Mater., 2014, 194:1.
[20] Yao J F, He M, Wang K, Chen R Z, Zhong Z X, Wang H T. Crystengcomm, 2013, 15:3601.
[21] He M, Yao J F, Liu Q, Zhong Z X, Wang H T. Dalton Trans., 2013, 42:16608.
[22] Fujita M, Kwon Y J, Washizu S, and Ogura K. J. Am. Chem. Soc., 1994, 116:1151.
[23] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38:1450.
[24] Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. Chem. Commun., 2014, 50:3786.
[25] Junghans U, Suttkus C, Lincke J, Laessig D, Krautscheid H, Glaeser R. Microporous Mesoporous Mater., 2015, 216:151.
[26] Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. Nature, 2000, 404:982.
[27] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129:2607.
[28] Meilikhov M, Yusenko K, Esken D, Turner S, van Tendeloo G, Fischer R A. Eur. J. Inorg. Chem., 2010:3701.
[29] Arnanz A, Pintado-Sierra M, Corma A, Iglesias M, Sanchez F. Adv. Synth. Catal., 2012, 354:1347.
[30] Bhattacharjee S, Lee Y R, Puthiaraj P, Cho S M, Ahn W S. Catal. Surv. Asia, 2015, 19:203.
[31] Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. Science, 2005, 309:2040.
[32] Kim J, Cho H Y, Ahn W S. Catal. Surv. Asia, 2012, 16:106.
[33] D'Souza D M, Mueller T J J. Chem. Soc. Rev., 2007, 36:1095.
[34] Sankar M, Dimitratos N, Miedziak P J, Wells P P, Kiely C J, Hutchings G J. Chem. Soc. Rev., 2012, 41:8099.
[35] Yu X, Cohen S M. Chem. Commun., 2015, 51:9880.
[36] Huang Y, Zhang Y, Chen X, Wu D, Yi Z, Cao R. Chem. Commun., 2014, 50:10115.
[37] 魏文英(Wei W Y),方键(Fang J),孔海宁(Kong H N),韩金玉(Han J Y),常贺英(Chang H Y). 化学进展(Progress in Chemistry). 2005, 17:1110.
[38] Juan-Alcaniz J, Ramos-Fernandez E V, Lafont U, Gascon J, Kapteijn F. J. Catal., 2010, 269:229.
[39] Yang X L, Qiao L M, Dai W L. Microporous Mesoporous Mater., 2015, 211:73.
[40] Roesler C, Esken D, Wiktor C, Kobayashi H, Yamamoto T, Matsumura S, Kitagawa H, Fischer R A. Eur. J. Inorg. Chem., 2014:5514.
[41] Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114:13362.
[42] Chen L, Chen H, Li Y. Chem. Commun., 2014, 50:14752.
[43] Liu H, Chang L, Chen L, Li Y. J. Mater. Chem. A, 2015, 3:8028.
[44] Pastoriza-Santos I, Liz-Marzan L M. Adv. Funct. Mater., 2009, 19:679.
[45] Aguirre M E, Rodriguez H B, San Roman E, Feldhoff A, Grela M A. J. Phys. Chem. C, 2011, 115:24967.
[46] Yamamoto H, Yano H, Kouchi H, Obora Y, Arakawa R, Kawasaki H. Nanoscale, 2012, 4:4148.
[47] Shen L J, Wu W M, Liang R W, Lin R, Wu L. Nanoscale, 2013, 5:9374.
[48] Sabo M, Henschel A, Froede H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17:3827.
[49] Henschel A, Gedrich K, Kraehnert R, Kaskel S. Chem. Commun., 2008:4192.
[50] Choi K M, Na K, Somorjai G A, Yaghi O M. J. Am. Chem. Soc., 2015, 137:7810.
[51] Pan Y, Yuan B, Li Y, He D. Chem. Commun., 2010, 46:2280.
[52] Puthiaraj P, Ahn W S. Catal. Commun., 2015, 65:91.
[53] Qi Y, Luan Y, Peng X, Yang M, Hou J, Wang G. Eur. J. Inorg. Chem., 2015:5099.
[54] Zhu Q L, Li J, Xu Q. J. Am. Chem. Soc., 2013, 135:10210.
[55] Bhattacharjee S, Kim J, Ahn W-S. J. Nanosci. Nanotechnol., 2014, 14:2546.
[56] Yiping Zhang Z Y, and Richard J. Puddephatt. Chem. Mater., 1998, 10:2293.
[57] David B. Beach F K L, and, Hu C-K. Chem. Mater., 1990, 2:216.
[58] Mueller M, Hermes S, Kaehler K, van den Berg M W E, Muhler M, Fischer R A. Chem. Mater., 2008, 20:4576.
[59] Okumura M, Tsubota S, Haruta M. J. Mol. Catal. A, 2003, 199:73.
[60] Hermes S, Schroter M K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer R W, Fischer R A. Angew. Chem. Int. Ed., 2005, 44:6237.
[61] Hermes S, Schroder F, Amirjalayer S, Schmid R, Fischer R A. J. Mater. Chem., 2006, 16:2464.
[62] Esken D, Turner S, Lebedev O I, Van Tendeloo G, Fischer R A. Chem. Mater., 2010, 22:6393.
[63] Hermannsdoerfer J, Friedrich M, Miyajima N, Albuquerque R Q, Kuemmel S, Kempe R. Angew. Chem. Int. Ed., 2012, 51:11473.
[64] Luz I, Rosler C, Epp K, Xamena F, Fischer R A. Eur. J. Inorg. Chem., 2015:3904.
[65] Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14:8456.
[66] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131:11302.
[67] El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. J. Mater. Chem., 2009, 19:7625.
[68] Martis M, Mori K, Fujiwara K, Ahn W-S, Yamashita H. J. Phys. Chem. C, 2013, 117:22805.
[69] Hou J, Luan Y, Tang J, Wensley A M, Yang M, Lu Y. J. Mol. Catal. A:Chem., 2015, 407:53.
[70] Liu H, Li Y, Jiang H, Vargas C, Luque R. Chem. Commun., 2012, 48:8431.
[71] Long J, Liu H, Wu S, Liao S, Li Y. ACS Catal., 2013, 3:647.
[72] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257:315.
[73] 谭海燕(Tan H Y), 吴金平(Wu J P). 物理化学学报(Acta Phys. -Chim. Sin.),2014, 30:715.
[74] Opelt S, Tuerk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Catal. Commun., 2008, 9:1286.
[75] Wan Y, Chen C, Xiao W, Jian L, Zhang N. Microporous Mesoporous Mater., 2013, 171:9.
[76] Hongli Liu R F, Zhong Li, Yingwei Li. Chem. Eng. Sci., 2015, 122:350.
[77] Wang C, Zhang H, Feng C, Gao S, Shang N, Wang Z. Catal. Commun., 2015, 72:29.
[78] Faustini M, Kim J, Jeong G Y, Kim J Y, Moon H R, Ahn W S, Kim D P. J. Am. Chem. Soc., 2013, 135:14619.
[79] Abdelhameed R M, Simoes M M Q, Silva A M S, Rocha J. Chem. Eur. J., 2015, 21:11072.
[80] Sha Z, Wu J. RSC Adv., 2015, 5:39592.
[81] He J, Wang J Q, Chen Y J, Zhang J P, Duan D L, Wang Y, Yan Z Y. Chem. Commun., 2014, 50:7063.
[82] Pascanu V, Yao Q, Gomez A B, Gustafsson M, Yun Y, Wan W, Samain L, Zou X, Martin-Matute B. Chem. Eur. J., 2013, 19:17483.
[83] Carson F, Pascanu V, Gomez A B, Zhang Y, Platero-Prats A E, Zou X D, Martin-Matute B. Chem. Eur. J., 2015, 21:10896.
[84] Kim S N, Yang S T, Kim J, Park J E, Ahn W S. Crystengcomm, 2012, 14:4142.
[85] Dai H, Xia B, Wen L, Du C, Su J, Luo W, Cheng G. Appl.Catal. B-Environ., 2015, 165:57.
[86] 郝志谋(Hao Z M), 李季(Li J). 化学进展(Progress in Chemistry), 2012, 24:1506.
[87] Shilov A E, Shul'pin G B. Chem. Rev., 1997, 97:2879.
[88] Kesavan L, Tiruvalam R, Ab Rahim M H, bin Saiman M I, Enache D I, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Taylor S H, Knight D W, Kiely C J, Hutchings G J. Science, 2011, 331:195.
[89] Schroeder F, Henke S, Zhang X, Fischer R A. Eur. J. Inorg. Chem., 2009:3131.
[90] Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402:276.
[91] 童敏曼(Tong M M),赵旭东(Zhao X D),解丽婷(Xie L T),刘大欢(Liu D H),阳庆元(Yang Q Y),仲崇立(Zhong C L). 化学进展(Progress in Chemistry), 2012, 24:1646.
[92] Hashimoto K, Irie H, Fujishima A. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44:8269.
[93] Lu H Q, Zhao B B, Zhang D, Lv Y L, Shi B P, Shi X C, Wen J, Yao J F, Zhu Z P. J. Photochem. Photobiol. A-Chem., 2013, 272:1.
[94] Lu H Q, Zhao B B, Pan R L, Yao J F, Qiu J H, Luo L, Liu Y C. RSC Adv., 2014, 4:1128.
[95] Li H, Hao Y, Lu H, Liang L, Wang Y, Qiu J, Shi X, Wang Y, Yao J. Appl. Surf. Sci., 2015, 344:112.
[96] Wang Y, Lu H, Wang Y, Qiu J, Wen J, Zhou K, Chen L, Song G, Yao J. RSC Adv., 2016, 6:1860.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[11] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[12] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[15] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.