English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 784-795 DOI: 10.7536/PC131124 前一篇   后一篇

• 综述与评论 •

深共融溶剂在有机合成中的应用

王爱玲1, 郑学良1,2, 赵壮志1,2, 李长平1, 郑学仿*1,2   

  1. 1. 大连大学环境与化学工程学院 大连 116622;
    2. 大连大学辽宁省生物有机化学重点实验室 大连 116622
  • 收稿日期:2013-11-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 郑学仿,e-mail:dlxfzheng@126.com E-mail:dlxfzheng@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21271036)和大连市优秀青年科技人才基金项目(No. 2009J22DW038)资助

Deep Eutectic Solvents to Organic Synthesis

Wang Ailing1, Zheng Xueliang1,2, Zhao Zhuangzhi1,2, Li Changping1, Zheng Xuefang*1,2   

  1. 1. College of Environment and Chemical Engineering, Dalian University, Dalian 116622;
    2. Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
  • Received:2013-11-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21271036) and the Outstanding Young Talent Fund from the Dalian Science and Technology Bureau (No. 2009J22DW038).

深共融溶剂是一种新型绿色溶剂,与传统的有机溶剂相比,其具有低蒸气压、 不易燃、 稳定性好、 无毒性、 生物降解性、 可回收和廉价易得等优点。深共融溶剂作为新型溶剂,应用前景广泛。本文综述了近几年其作为新型的反应介质或催化剂用于传统的有机合成反应的最新研究成果,主要从卤代反应、Diels-Alder反应、Knoevenagel缩合、Henry反应、Perkin反应、Paal-Knorr反应和Biginelli反应等方面对其进行综述,最后展望了深共融溶剂在有机反应中的发展前景。

Deep eutectic solvents(DES) is a new type of environmentally green solvents. Compared with conventional organic solvents, DES have more advantages, such as negligible vapor pressure, non-flammability, good chemical and thermal stability, non-toxicity, biodegradability, recyclability and low price among others. As a new type of solvent, DES has an extremely extensive application prospect. The latest research results of DES is reviewed in this paper. DES as a novel solvent and catalyst was applied in the traditional organic synthesis reaction, mainly including Helogenation reaction, Diels-Alder reaction, Knoevenagel reaction, Henry reaction, Perkin reaction, Paal-Knorr reaction, Biginelli reaction. At last, we hope that DES has a good application prospect in the field of organic synthesis.

Contents
1 Introduction
2 DES in the replacement reaction
2.1 Alkylation of nitrogen
2.2 Alkylation of the alcohol
2.3 Friedel-Crafts alkylation reaction
2.4 Halogenation
2.5 Esterification
3 DES in addition reactions
3.1 Diels-Alder reaction
3.2 Henry reaction
3.3 Cycloaddition
4 DES in condensation reaction
4.1 Knoevenagel condensation
4.2 Perkin reaction
5 DES in the cyclization
5.1 Fischer indole synthesis
5.2 Paal-Knorr reaction
5.3 Biginelli reaction
6 DES in the elimination reactions
7 DES in rearrangement reactions
8 DES in reducing reactions
9 Conclusions and outlook

中图分类号: 

()

[1] Reinhardt D, Ilgen F, Kralisch D, König B, Kreisel G. Green Chem., 2008, 10: 1170.
[2] Jessop P G. Green Chem., 2011, 13: 1391.
[3] Moity L, Durand M, Benazzouz A, Pierlot C, Molinier V, Aubry J M. Green Chem., 2012, 14: 1132.
[4] (a) 应安国(Ying A G), 叶伟东(Ye W D), 刘泺(Liu Y), 吴国锋(Wu G F), 陈新志(Chen X Z), 钱胜(Qian S), 张秋萍(Zhang Q P). 有机化学(Org. Chem.), 2008, 28(12):2081.(b) Ranu B C, Banerjee S, Jana R. Tetrahedron, 2007, 63: 776.(c) Kumar A, Pawar S S. J. Org. Chem., 2007, 72: 8111.(d) Zhu A L, Jiang T, Wang D, Han B X, Liu L, Huang J, Zhang J C, Sun D H. Green Chem., 2005, 7: 514.(e) Xin X, Guo X, Duan H F, Lin Y J, Sun H. Catalysis Communications, 2007, 8: 115.(f) Kim Y J, Varma R S. J. Org. Chem., 2005, 70: 7882.(g) Law M C, Cheung T W, Wong K Y, Chan T K. J. Org. Chem., 2007, 72: 923.(h) Katsoura M H, Polydera A C, Katapodis P, Kolisis F N, Stamatis H. Process Biochemistry, 2007, 42: 1326.(i) Lou W Y, Zong M H, Smith T J. Green Chem., 2006, 8: 147.
[5] Olivier-Bourbigou H, Magna L, Morvan D. Applied Catalysis A: General, 2010, 373: 1.
[6] Walsh D A, Lovelock K R J, Licence P. Chem. Soc.Rev., 2010, 39: 4185.
[7] Dupont J, Scholten J D. Chem. Soc. Rev., 2010, 39: 1780.
[8] Wang H, Gurau G, Rogers R D. Chem. Soc. Rev., 2012, 41: 1519.
[9] Deetlefs M, Seddon K R. Green Chem., 2010, 12: 17.
[10] Francisco M, Bruinhorst A, Kroon M C. Angew. Chem. Int. Ed., 2013, 52: 3074.
[11] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, 70.
[12] Abbott A P, Barron J C, Ryder K S, Wilson D. Chem. Eur. J., 2007, 13: 6495.
[13] (a) Abbott A P, Boothby D, Capper G, Davies D L, Rasheed R K. J. Am. Chen. Soc., 2004, 126: 9142.(b) Tang S, Gary A, Baker, Zhao H. Chem. Soc. Rev., 2012, 41: 4030.
[14] Zhang Q H, Vigier K D O, Royer S, Jerome F. Chem. Soc.Rev., 2012, 41: 7108.
[15] (a) Abbott A P, Harris R C, Ryder K S, Agostino C D, Gladden L F, Mantle M D. Green Chem., 2011, 13: 82.(b) Maugeri Z, Maria P D. RSC Adv., 2012, 2: 421.
[16] Yu Y H, Lu X M, Zhou Q, Dong K, Yao H W, Zhang S J. Chem. Eur. J., 2008, 14: 11174.
[17] Katherine D W, Kim H J, Sun J Z, Mac Farlane D R, Elliott G D. Green Chem., 2010, 12: 507.
[18] Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B. Green Chem., 2009, 11: 1948.
[19] Daia Y, Spronsenb J, Witkamp G, Verpoortea R, Choia Y H. Analytica Chimica Acta, 2013, 766: 61.
[20] Ruß C, König B. Green Chem., 2012, 14: 2969.
[21] (a) Zhang Z H, Zhang X N, Mo L P, Li Y X, Ma F P. Green Chem., 2012, 14: 1502.(b) Phadtare S B, Shankarling G S. Environ. Chem. Lett., 2012, 10: 363.(c) Azizi N, Gholibeglo E. RSC Adv., 2012, 2: 7413.
[22] (a) Ramesh S, Shanti R, Morris E. Carbohydr. Polym., 2012, 87: 701.(b) Abbott A P, Capper G, Davies D L, Rasheed R K. Chem. Eur. J., 2004, 10: 3769.(c) Abbott A P, Ttaib K E, Frisch G, McKenzie K J, Ryder K S. Phys. Chem. Chem. Phys., 2009, 11: 4269.
[23] (a) Gutierrez M C, Rubio F, Monte F D. Chem. Mater., 2010, 22: 2711.(b) Mota-Morales J D, Gutierrez M C, Ferrer M L, Jimenez R, Santiago P, Sanchez I C, Terrones M, Monte F D, Luna Barcenas G. J. Mater. Chem. A, 2013, 1: 3970.
[24] Vigier K D O, Benguerba A, Barrault J, Jerome F. Green Chem., 2012, 14: 285.
[25] Coulembier O, Lemaur V, Josse T, Minoia A, Cornilb J, Dubois P. Chem. Sci., 2012, 3: 723.
[26] Disale S T, Kale S R, Kahandal S S, Srinivasan T J, Jayaram R V. Tetrahedron Letters, 2012, 53: 2277.
[27] (a)Gorke J T, Srienc F, Kazlauskas R J. Chem. Commun., 2008, 1235.(b)Zhao H, Baker G A, Holmes S. Org. Biomol. Chem., 2011, 9: 1908.
[28] Abbott A P, Capper G, Davies D L, Kenzie K J, Obi S U. J. Chem. Eng. Data, 2006, 51: 1280.
[29] (a) Pang K, Hou Y C, Wu W Z, Guo W J, Peng W, Marsh K N. Green Chem., 2012, 14: 2398.(b) Maugeri Z, Leitner Walter, María P D, Tetrahedron Letters, 2012, 53: 6968.(c) Yang D Z, Hou M Q, Ning H, Zhang J L, Ma J, Yang G Y, Han B X. Green Chem., 2013, 15: 2261.(d) Li C P, Li D, Zou S S, Li Z, Yin J M, Wang A L, Cui Y N, Yao Z L, Zhao Q.Green Chem., 2013, 15: 2793.
[30] Bradsha J S, Krakowisk K E, Izatt R H. Tetrahedron, 1992, 48: 4475.
[31] Salvatore R N, Nagle A S, Jung K W. J. Org. Chem., 2002, 67: 674.
[32] Singh B, Lobo H, Shankarling G S. Catal. Lett., 2011, 141: 178.
[33] Burkhardt E R, Coleridge B M. Tetrahedron Letters, 2008, 49: 5152.
[34] Nova A, Balcells D, Schley N D, Dobereiner G E, Crabtree R H, Eisenstein O. Organometallics, 2010, 29: 6548.
[35] Qin H B, Yamagiwa N, Matsunaga S, Shibasaki M. Angew. Chem., 2007, 119: 413.
[36] (a) Cozzi P G, Zoli L. Angew. Chem., 2008, 120: 4230.(b) Motokura K, Nakagiri N, Mizugaki T, Ebitani K, Kaneda K. J. Org.Chem., 2007, 72: 6006.
[37] Zhu A L, Li L J, Zhuo K L, Wang J J. Green Chem., 2011, 13: 1244.
[38] Azizi N, Manocheri Z. Res. Chem. Intermed., 2012, 38: 1495.
[39] Chen Z Z, Zhou B, Cai H H, Zhu W, Zou X Z. Green Chem., 2009, 11: 275.
[40] Phadtare S B, Shankarling G S. Green Chem., 2010, 12: 458.
[41] Santi V D, Cardellini F, Brinchi L, Germani R. Tetrahedron Letters, 2012, 53: 5151.
[42] Griffiths G J, Previdoli F E. J. Org. Chem., 1993, 58: 6129.
[43] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4: 24.
[44] Imperato G, Eibler E, Niedermaier G, König B. Chem. Commun., 2005, 1170.
[45] Ilgen F, König B. Green Chem., 2009, 11: 848.
[46] Noboru O. The Nitro Group in Organic Synthesis. Chapter 3, Wiley VCH, 2001. 30
[47] Luzzio F A. Tetrahedron, 2001, 57: 915.
[48] Yi X B, Wang X, Cai C. Catalysis Communications, 2007, 8: 1995.
[49] Jiang T, Gao H X, Han B X, Zhao G Y, Chang Y H, Wu W Z, Gao L, Yang G Y. Tetrahedron Letters, 2004, 45: 2699.
[50] Singh B S, Lobo H R, Shankarling G S. Catalysis Comm-unications, 2012, 24: 70.
[51] Zhu A L, Jiang T, Han B X, Zhang J C, Xie Y, Ma X M. Green Chem., 2007, 9: 169.
[52] Azizi N, Batebi E. Catal. Sci. Technol., 2012, 2: 2445.
[53] Tietze L F. Chem. Rev., 1996, 96: 115.
[54] Sonawane Y A, Phadtare S B, Borse B N, Jagtap A R, Shankarling G S. Org. Lett., 2010, 12: 1456.
[55] Phadtare S B, Jarag K J, Shankarling G S. Dyes and Pigments, 2013, 97: 105.
[56] Dippy J F J, Evans R M. J. Org. Chem., 1950, 15: 451.
[57] Johnson J R. Org. React., 1942, 1: 210.
[58] Pawar P M, Jarag K J, Shankarling G S. Green Chem., 2011, 13: 2130.
[59] Hawkins I, Handy S T. Tetrahedron, 2013, 69: 9200.
[60] Wagaw S, Yang B H, Buchwald S L. J. Am. Chem. Soc., 1998, 120: 6621.
[61] Morales R C, Tambyrajah V, Jenkins P R, Davies D L, Abbott A P. Chem. Commun., 2004, 158.
[62] Gore S, Baskaran S, König B. Org. Lett., 2012, 14: 4568.
[63] Darabi H R, Aghapoor K, Farahani A D, Mohsenzadeh F. Environ. Chem. Lett., 2012, 10: 369.
[64] Méndez J M, Jiménez C C, León F, Vazquez A. Synthesis, 2012, 44: 3321.
[65] Abbas T, Najafi C A. Chin. J. Chem., 2012, 30: 372.
[66] Rahmatpour A. Monatsh Chem., 2012, 143: 491.
[67] Wilson M A, Filzen G, Welmaker G S. Tetrahedron Letters, 2009, 50: 4807.
[68] Handy S, Lavender K. Tetrahedron Letters, 2013, 54: 4377.
[69] Gore S, Baskaran S, Koenig B. Green Chem., 2011, 13: 1009.
[70] Borse B N, Borude V S, Shukla S R. Current Chemistry Letters, 2012, 1: 59.
[71] Gore S, Baskaran S, Koenig B. Adv. Synth. Catal., 2012, 354:2368.
[72] Hu S Q, Zhang Z F, Zhou Y X, Song J L, Fan H L, Han B X. Green Chem., 2009, 11: 873.
[73] Cristian V, Francisco J S, Joaquín G Á. Catalysis Communications, 2014, 44: 76.
[74] Azizi N, Batebi E, Bagherpour S, Ghafuri H. RSC Adv., 2012, 2: 2289.

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[5] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[6] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[7] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[8] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[9] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[10] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[13] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[14] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[15] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
阅读次数
全文


摘要

深共融溶剂在有机合成中的应用