English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 48-60 DOI: 10.7536/PC130631 前一篇   后一篇

• 综述与评论 •

水相中糖识别人工受体

熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱*, 孙涛垒*   

  1. 武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 卿光焱,e-mail:qing@whut.edu.cn;孙涛垒,e-mail:suntaolei@iccas.ac.cn E-mail:qing@whut.edu.cn;suntaolei@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21104061,21275114,51073123)和中央高校基本科研业务费专项资金(2013-YB-026)资助

Artificial Carbohydrate Receptors in Aqueous Media

Xiong Yuting, Li Minmin, Xiong Peng, Yang Meng, Qing Guangyan*, Sun Taolei*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21104061, 21275114, 51073123) and the Fundamental Research Funds for the Central Universities (2013-YB-026)

自然界中,糖类不仅作为生命体系的能量物质和结构物质,而且还作为信息分子在生命过程的细胞识别和调控中扮演着重要的角色,因此对糖识别的研究将极大地有助于糖类参与生理和病理过程的研究。生命体系中糖识别过程一方面基于受体的极性基团与糖羟基的氢键作用,另一方面依靠受体结构中的含芳环非极性基团与糖CH基相互作用,所以在极性溶液水中通过非共价键相互作用实现糖识别过程是当今化学界一个十分吸引人且又极具挑战性的研究课题。人工合成糖识别受体为研究自然界中糖识别过程的基本机制提供了一种有参考价值的模型系统,同时为仿生应用提供了有力的技术支持。本文从超分子化学、多分枝型、合成凝集素类和聚合物界面4种体系论述了近年来非硼酸类人工糖识别受体在水相中识别糖的研究进展及其潜在应用,并且对合成凝集素和界面糖识别体系做了特殊点评,最后对仿生人工合成受体在水相中对糖识别的未来的发展方向做了展望。

In nature, carbohydrates are not only known as energy substances and structural materials of life, but also famous as signaling molecules that play critical roles in cell recognition and regulation processes. Therefore, the investigation and simulation of carbohydrates recognition process will greatly contribute to the research of some pathological process involved with carbohydrate, which has attracted great interests in the development of artificial receptors for carbohydrates. Inspiring from protein-carbohydrate interactions in biological system, most of recognition procedures are based on two binding modes, one is hydrogen bonding interaction between hydroxyl groups of carbohydrates and polar residues of the receptors, the other is σ-π stacking or even sandwich inclusion involving CH moieties of carbohydrates and aromatic segments of receptors. Although significant progresses in carbohydrates sensing in organic solvents have been achieved in the past few decades, the binding of carbohydrates and their derivatives with high sensitivity and specific selectivity in aqueous solution still remains as one of the most interesting but challenging topics in current chemistry. Therefore, the investigation of these artificial receptors not only provides a series of valuable model systems mimicking natural products for carbohydrate recognition, but also promotes many biomimetic applications. In this work, the recent progresses on artificial receptors for carbohydrates in aqueous media are summarized from four aspects: supramolecular chemistry system, multi-branch architecture system, synthetic lectins and polymeric interface system. Among which we specifically highlight the synthetic lections and a novel carbohydrate recognition strategy based on polymeric interface materials. Finally, the research prospects are proposed briefly.

Contents
1 Introduction
2 Supramolecular chemistry systems
2.1 Cyclodextrin
2.2 Curdlan
2.3 Calixarene
2.4 Porphyrin
3 Multi-branch architecture systems
3.1 Dicarboxylate
3.2 Cyclopentane
3.3 Guanidinium and analogues
4 Synthetic lectins
4.1 Macrocyclic synthetic lectins
4.2 Polymer-based synthetic lectins
4.3 Oligo-peptide-based synthetic lectins
5 Polymeric interface systems
6 Conclusion and outlook

中图分类号: 

()

[1] Bertozzi C R, Kiessling L L. Science, 2001, 291: 2357.
[2] James T D, Sandanayake K R A S, Shinkai S. Nature, 1995, 374: 345.
[3] Pal A, Bérubé M, Hall D G. Angew. Chem. Int. Ed., 2010, 49: 1492.
[4] Striegler S. Curr. Org. Chem., 2003, 7: 81.
[5] Davis A P, Warehem R S. Angew. Chem. Int. Ed., 1999, 38: 2978.
[6] Dai C F, Sagwal A, Cheng Y F, Peng H J, Chen W X, Wang B H. Pure Appl. Chem., 2012, 84: 2479.
[7] Mazik M. Chem. Soc. Rev., 2009, 38: 935.
[8] Mazik M. RSC Adv., 2012, 2: 2630.
[9] Walker D B, Joshi G, Davis A P. Cell. Mol. Life Sci., 2009, 66: 3177.
[10] Zeng X, Andrade C A S, Oliveira M D L, Sun X L. Anal. Bioanal. Chem., 2012, 402: 3161.
[11] Fujimoto Y K, Green D F. J. Am. Chem. Soc., 2012, 134: 19639.
[12] 黄毅(Huang Y), 黄金花(Huang J H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 化学进展(Progress in Chemistry), 2008, 20(6): 942.
[13] Mazik M, Hartmann A, Jones P G. Chem. Eur. J., 2009, 15: 9147.
[14] Edwards N Y, Sager T W, McDevitt J T, Anslyn E V. J. Am. Chem. Soc., 2007, 129: 13575.
[15] Rusin O, Lang K, Král V. Chem. Eur. J., 2002, 8: 655.
[16] Ishi-i T, Mateos-Timoneda M A, Timmerman P, Crego-Calama M, Reinhoudt D N, Shinkai S. Angew. Chem. Int. Ed., 2003, 42: 2300.
[17] Lehn J M. Science, 1993, 260: 1762.
[18] Oshovsky G V, Reinhoudt D N, Verboom W. Angew. Chem. Int. Ed., 2007, 46: 2366.
[19] 孔蕊(Kong R), 施冬健(Shi D J), 刘蓉瑾(Liu R J), 陈明清(Chen M Q). 高分子通报 (Polymer Bulletin), 2012, (12): 36.
[20] Aoyama Y, Nagai Y, Otsuki J, Kobayashi K, Toi H. Angew. Chem. Int. Ed., 1992, 31: 745.
[21] Hirsch W, Muller T, Pizer R, Ricatto P J. Can. J. Chem., 1995, 73: 12.
[22] Hacket F, Coteron J M, Schneider H J, Kazachenko V P. Can. J. Chem., 1997, 75: 52.
[23] Easton C J, Lincoln S F. Chem. Soc. Rev., 1996, 25: 163.
[24] Danil de Namor A F, Blackett P M, Cabaleiro M C, Al Rawi J M A. J. Chem. Soc. Faraday Trans., 1994, 90: 845.
[25] Eliseev A V, Schneider H J. J. Am. Chem. Soc., 1994, 116: 6081.
[26] Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S. Chem. Commun., 2005, 4383.
[27] Numata M, Shinkai S. Adv. Polym. Sci., 2008, 220: 65.
[28] Fukuhara G, Inoue M. Chem. Commun., 2010, 46: 9128.
[29] Fukuhara J, Inoue Y. J. Am. Chem. Soc., 2011, 133: 768.
[30] 卿光焱(Qing G Y), 刘顺英(Liu S Y), 何永炳(He Y B). 化学进展 (Progress in Chemistry), 2008, 20(12): 1933.
[31] Aoyama Y, Tanaka Y, Toi H, Ogoshi H. J. Am. Chem. Soc., 1988, 110: 634.
[32] Kobayashi K, Asakawa Y, Kato Y, Aoyama Y. J. Am. Chem. Soc., 1992, 114: 10307.
[33] Yanagihara R, Aoyama Y. Tetrahedron Lett., 1994, 35: 9725.
[34] Nishio M, Umezawa Y, Hirota M, Takeuchi Y. Tetrahedron, 1995, 51: 8665.
[35] Poh B L, Tan C M. Tetrahedron, 1993, 49: 9581.
[36] Poh B L, Tan C M. Tetrahedron Lett., 1994, 35: 6387.
[37] 张春(Zhang C), 郑炎松(Zheng Y S), 梅付名(Mei F M), 李光兴(Li G X). 化学进展 (Progress in Chemistry), 2004, 16(6): 935.
[38] Rusin O, Král V. Tetrahedron Lett., 2001, 42: 4235.
[39] Král V, Rusin O, Charvatova J, Anzenbacher P, Fogl J. Tetrahedron Lett., 2000, 41: 10147.
[40] Charvatova J, Rusin O, Král V, Volka K, Matejka P. Sensor Actuat. B Chem., 2001, 76: 366.
[41] Král V, Rusin O, Schmidtchen F P. Org. Lett., 2001, 3: 873.
[42] Rusin O, Lang K, Král V. Chem. Eur. J., 2002, 8: 655.
[43] Mazik M, Cavga J. J. Org. Chem., 2006, 71: 2957.
[44] Hubbard R D, Horner S R, Miller B L. J. Am. Chem. Soc., 2001, 123: 5810.
[45] Blondeau P, Segura M, Pérez-Fernández R, Mendoza J. Chem. Soc. Rev., 2007, 36: 198.
[46] Mazik M, Cavga H. J. Org. Chem., 2007, 72: 831.
[47] Mazik M, Cavga H. Eur. J. Org. Chem., 2007, 3633.
[48] Schmuck C, Schwegmann M. J. Am. Chem. Soc., 2005, 127: 3373.
[49] Schmuck C, Schwegmann M. Org. Lett., 2005, 7: 3517.
[50] Kubik S. Angew. Chem. Int. Ed., 2009, 48: 1722.
[51] Arnaud J, Audfray A, Imberty A. Chem. Soc. Rev., 2013, 42: 4798.
[52] Davis A P, Wareham R S. Angew. Chem. Int. Ed., 1998, 37: 2270.
[53] Ryan T J, Lecollinet G, Velasco T, Davis A P. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 4863.
[54] Barwell N P, Davis A P. J. Org. Chem., 2011, 76: 6548.
[55] Joshi G, Davis A P. Org. Biomol. Chem., 2012, 10: 5760.
[56] Klein E, Crump M P, Davis A P. Angew. Chem. Int. Ed., 2005, 44: 298.
[57] Ferrand Y, Klein E, Barwell N P, Crump M P, Jimenez-Barbero J, Vicent C, Boons G J, Ingale S, Davis A P. Angew. Chem. Int. Ed., 2009, 48, 1775.
[58] Barwell N P, Crump M P, Davis A P. Angew. Chem. Int. Ed., 2009, 48: 7673.
[59] Ferrand Y, Crump M P, Davis A P. Science, 2007, 318: 619.
[60] Sookcharoenpinyo B, Klein E, Ferrand Y, Walker D B, Brotherhood P R, Ke C F, Crump M P, Davis A P. Angew. Chem. Int. Ed., 2012, 51: 4586.
[61] Ke C, Destecroix H, Crump M P, Davis A P. Nat. Chem., 2012, 4: 718.
[62] Hayley Birch. Sensor a Snug Fit for Glucose. (2012-08-06). http://www. rsc. org/chemistryworld/2012/08/sensor-snug-fit-glucose.
[63] Alexandre K B, Gray E S, Mufhandu H, McMahon J B, Chakauya E, O'Keefe B R, Chikwamba R, Morris L. Virology, 2012, 423: 175.
[64] Balzarini J. Antiviral Res., 2006, 71: 237.
[65] Jay J I, Lai B E, Myszka D G, Mahalingam A, Langheinrich K, Katz D F, Kiser P F. Mol. Pharmaceutics, 2010, 7: 116.
[66] Mahalingam A, Geonnotti A R, Balzarini J, Kiser P F. Mol. Pharm., 2011, 8: 2465.
[67] Bérubé M, Dowlut M, Hall D G. J. Org. Chem., 2008, 73: 6471.
[68] Lasky L A. Science, 1992, 258: 964.
[69] Otsuki J, Kobayashi K, Toi H, Aoyama Y. Tetrahedron Lett., 1993, 34: 1945.
[70] Sugimoto N, Mioshi D, Zou J. Chem. Commun., 2000, 2295.
[71] Reenberg T, Nyberg N, Duus J O, van Dongen J L J, Meldal M. Eur. J. Org. Chem., 2007, 5003.
[72] Lehn J M, Eliseev A V. Science, 2001, 291: 2331.
[73] 陈玉岩(Chen Y Y), 刘刚(Liu G). 化学进展 (Progress in Chemistry), 2007, 19(12): 1903.
[74] Rauschenberg M, Bomke S, Karst U, Ravoo B J. Angew. Chem. Int. Ed., 2010, 49: 7340.
[75] Arndt N X, Tiralongo J, Madge P D, von Itzstein M, Day C J. J. Cell. Biochem., 2011, 112: 2230.
[76] Ariga K, Kunitake T, Acc. Chem. Res., 1998, 31: 371.
[77] Sun T L, Qing G Y, Su B L, Jiang L. Chem. Soc. Rev., 2011, 40: 2909.
[78] Sun T L, Qing G Y. Adv. Mater., 2011, 23: H57.
[79] Zhang M X, Qing G Y, Sun T L. Chem. Soc. Rev., 2012, 41: 1972.
[80] Qing G Y, Wang X, Fuchs H, Sun T L. J. Am. Chem. Soc., 2009, 131: 8370.
[81] Qing G Y, Wang X, Jiang L, Fuchs H, Sun T L. Soft Matter, 2009, 5: 2759.
[82] Qing G Y, Sun T L. NPG Asia Mater., 2012, 4: e4.
[83] Qing G Y, Sun T L. Adv. Mater., 2011, 23: 1615.
[84] Zhang M X, Qing G Y, Xiong C L, Cui R, Pang D W, Sun T L. Adv. Mater., 2013, 25: 749.
[85] Asensio J L, Ardá A, Cañada F J, Jiménez-Barbero J. Acc. Chem. Res., 2013, 46: 946.
[86] Schneider H J, Yatsimirsky A. Chem. Soc. Rev., 2008, 37: 263.
[87] Schneider H J, Angew. Chem. Int. Ed., 2009, 48: 3924.
[88] Ito S, Hayama K, Hirabayashi J. Methods Mol. Biol., 2009, 534: 195.

[1] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[2] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[3] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[4] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[5] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[6] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[7] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[8] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[9] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[10] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[11] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[12] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[13] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[14] 张瑞璞, 张润泽, 罗三中. 仿生邻醌催化[J]. 化学进展, 2020, 32(11): 1753-1765.
[15] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
阅读次数
全文


摘要

水相中糖识别人工受体