English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2378-2391 DOI: 10.7536/PC201122 前一篇   后一篇

• 综述 •

基于贻贝启发的水下仿生胶黏剂

王桂龙1, 崔辛1, 陈莹1, 胡振峰1, 梁秀兵1,*(), 陈甫雪2,*()   

  1. 1 军事科学院国防科技创新研究院 北京 100071
    2 北京理工大学化学与化工学院 北京 100081
  • 收稿日期:2020-11-18 修回日期:2021-04-04 出版日期:2021-12-20 发布日期:2021-07-29
  • 通讯作者: 梁秀兵, 陈甫雪

Underwater Biomimetic Adhesive Based on Mussel Inspiration

Guilong Wang1, Xin Cui1, Ying Chen1, Zhen-feng Hu1, Xiubing Liang1(), Fuxue Chen2()   

  1. 1 Defense Innovation Institute, Academy of Military Science,Beijing 100071, China
    2 School of Chemistry & Chemical Engineering, Beijing Institute of Technology,Beijing 100081, China
  • Received:2020-11-18 Revised:2021-04-04 Online:2021-12-20 Published:2021-07-29
  • Contact: Xiubing Liang, Fuxue Chen

海洋中的贻贝依靠丝足(Byssus)与足盘(Plaque)可以在潮湿及水下环境中快速而牢固地黏附于各种固体表面。贻贝强健的足部具有沟渠状的生理结构,通过类似于“注塑生产”的生理过程,它们可以生成丝足与足盘。贻贝将液态的蛋白质挤压到沟渠里,只需几秒钟时间,这些蛋白质就能形成一条条发丝一样纤细的丝足。每条丝足的末端都有一个黏性足盘,足盘可以牢牢地黏附在岩石及固体表面。丝足及足盘由多种黏附蛋白(Mfps)组成,且几乎每种黏附蛋白都含有L-3,4-二羟基苯丙氨酸(DOPA)成分。在过去的数十年间,科研人员基本揭示了贻贝黏附蛋白的结构及其黏附机理。DOPA的儿茶酚基团,通过氧化交联、金属螯合、氢键、静电作用、疏水作用、π-π作用、阳离子-π作用等各种共价和非共价相互作用,实现强大的界面黏接。基于贻贝黏附蛋白的结构及其黏附机理,通过使用DOPA及其类似物修饰的聚合物体系,人们得到了多种具有优秀机械性能和功能化的新型仿生多巴类水下胶黏剂。本综述首先介绍了贻贝黏附蛋白的组成特点及其黏附机理;随后分别介绍了凝聚层类胶黏剂、水凝胶类胶黏剂、智能型水下胶黏剂的结构特点及黏附机理;最后讨论了目前仿生水下胶黏剂存在的问题及未来发展前景。

Marine mussels can quickly and firmly anchor to foreign surfaces in seawater using their byssus and plaque. Mussels produce byssus and plaque through a physiological process similar to “injection production”. Mussels squeeze liquid protein into the ventral groove on their feet, which will then form hair-like byssus in seconds. Each byssus connects with a plaque at its end, and the plaque can firmly adhere to rocks or other solid surfaces. Byssus and plaque are composed of a variety of mussel foot proteins (Mfps), and almost every Mfps contains L-3,4-dihydroxyphenylalanine (DOPA). In the past few decades, researchers have basically revealed the structure of Mfps and their adhesion mechanism. The catechol group of DOPA achieves strong interfacial bonding through a variety of covalent and non-covalent interactions, such as oxidative crosslinking, metal-catechol coordination, hydrogen bonding, electrostatic interaction, hydrophobic interactions, π-π interactions, cation-π interactions, etc. Based on the structure of Mfps and their adhesion mechanism, a variety of new biomimetic DOPA adhesives with excellent mechanical properties and functionalization have been obtained using polymer system modified by DOPA and its analogues. In this review, we first introduce the composition and adhesion mechanism of Mfps, then discuss the corresponding structure characteristics and adhesion mechanism of coacervate adhesives, hydrogels adhesives and intelligent adhesives. Finally, the existing problems and future development prospects of underwater biomimetic adhesives are presented.

Contents

1 Introduction

2 Species and distribution of mussel foot proteins

3 Adhesion mechanism of mussel foot proteins

4 Research progress of underwater biomimetic adhesives

4.1 Coacervate type of underwater adhesives

4.2 Hydrogel type of underwater adhesive

4.3 Smart type of underwater adhesive

4.4 DOPA-free type of underwater adhesives

5 Application prospect of underwater adhesives

5.1 Anti-corrosion and maintenance of ships

5.2 Surgical wound suturing and tissue repair

5.3 Intelligent biomimetic equipment

6 Conclusion and outlook

()
图1 贻贝依靠丝足和足盘黏附在固体表面[5]
Fig.1 Mussels anchor to foreign surfaces by means of byssus and plaque[5]
表1 贻贝黏附蛋白的结构特点及分布位置[5,19⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
Table 1 Composition characteristics and localization of mussel foot proteins[5,19⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
图2 (a)邻苯二酚基团参与形成内聚力机理[28], (b)邻苯二酚基团在各种固体表面黏附机理[26]
Fig.2 (a) Catechol groups are involved in the formation of cohesion mechanism[28], (b) The adhesion mechanism of catechol groups on various solid surfaces[26]
图3 阳离子对儿茶酚类胶黏剂的影响。(a)同时含有赖氨酸和儿茶酚结构;(b)同时含有精氨酸和儿茶酚结构;(c)只含有儿茶酚结构;(d)只含有阳离子结构[56]
Fig.3 Chemical structures of catechol analogs that were used to investigate the influence of cations on the adhesive performance of catechol-containing tripeptides. (a) and (b) contain both catechols and cations; (c) only contains catechols, while (d) only contains cations[56]
图4 儿茶酚基团和有机阳离子协同作用导致水下黏附原理[57]
Fig.4 The synergistic action of catechol groups and organic cations leads to the principle of underwater adhesion[57]
图5 聚磷酸多巴胺胶黏剂的结构及水下黏接机理[71]
Fig.5 Structure and mechanism of dopamine polyphosphate adhesive[71]
图6 QCS/PAAcat胶黏剂的结构及水下黏接机理[72]
Fig.6 Structure and underwater adhension mechanism of QCS/PAAcat adhesive[72]
图7 (a) 同电荷凝聚层的形成原理[Rmfp-1(绿色)、MADQUAT(灰色)];(b) Rmfp-1与MADQUAT同电荷凝聚层的光学显微镜图(比例尺, 50 μm.);(c)同电荷凝聚层的分相效果(比例尺, 1 cm.)。[73]
Fig.7 (a) Schematic of like-charged complex coacervate formation [Rmfp-1 (green) and MADQUAT (gray)]; (b) Light microscopy image of microdroplets of Rmfp-1 and MADQUAT like-charged coacervate. (Scale bar, 50 μm.); (c) Bulk phase separation of the like-charged coacervate. (Scale bar, 1 cm.)[73]
图8 iCMBAs类水凝胶的结构及制备[78]
Fig.8 Structure and preparation of iCMBAs hydrogel[78]
图9 海藻酸-儿茶酚水凝胶的结构及其黏附机理[79]
Fig.9 Structure and adhesion mechanism of alginic acid-catechol hydrogel[79]
图10 DOPA-Fe3+明胶水凝胶的结构及其黏附机理[80]
Fig.10 Structure and adhesion mechanism of DOPA-Fe3+ gelatin hydrogel[80]
图11 PAA/PMD水凝胶的结构及其黏附机理[81]
Fig.11 The structure and adhesion mechanism of PAA/PMD hydrogel[81]
图12 HA/Pluronic水凝胶的结构及温度响应机理[84]
Fig.12 Structure and temperature response mechanism of HA/Pluronic hydrogel[84]
图13 儿茶酚-硼酸酯胶黏剂结构及其温度响应机理[85]
Fig.13 The structure and temperature response mechanism of catechol-borate adhesive[85]
图14 (a) Fe3O4-TRGA的示意图及实拍图片;(b) Fe3O4-TRGA的NIR响应黏附能力转换机制示意图;(c)透射电镜(TEM)图像显示掺杂Fe3O4 NPs (0.2 wt%)在TRGA中的分布[86]
Fig.14 (a) Schematic diagram and real photos of the Fe3O4-TRGA; (b) Schematic diagram showing NIR-responsive adhesion switching mechanism for the Fe3O4-TRGA;(c) Transmission electron microscope (TEM) image showing the distribution of doped Fe3O4 NPs (0.2 wt%) in the TRGA[86]
图15 (a) Chitosan-Catechol-pNIPAM水下胶黏剂制备示意图;(b) Chitosan-Catechol-pNIPAM胶黏剂的可逆热响应机制;(c) 20 ℃; (d) 40 ℃, Chitosan-Catechol-pNIPAM溶液状态(50 mg/mL) (20 ℃为流动状态,40 ℃为交联态)[87]
Fig.15 (a) A schematic illustration of the preparation of the Chitosan-Catechol-pNIPAM biomacromolecular wet adhesive; (b) The mechanism for the chain state of the Chitosan-Catechol-pNIPAM biomacromolecule induced by the reversible thermo-responsive conformational change of pNIPAM side chains on the chitosan backbone (below the LCST, Chitosan-Catechol-pNIPAM is a linear branched macromolecule; above the LCST, Chitosan-Catechol-pNIPAM is a crosslinked macromolecule);(c) 20 ℃; (d) 40 ℃. Optical photographs showing the solution states (50 mg/mL) of Chitosan-Catechol-pNIPAM (20 ℃ is the flow state and 40 ℃ is cross-linked).[87]
图16 anth-PEI胶黏剂受光、热刺激响应示意图[88]
Fig.16 anth-PEI adhesives stimulated by light and heat[88]
图17 基于LMWMs的超分子黏接材料[89]
Fig.17 Supramolecular adhesives based on LMWMs[89]
图18 基于PNIPAM的胶黏剂结构及其温度响应机理[92]
Fig.18 PNIPAM based adhesive and its temperature response mechanism[92]
[1]
Cui J X, Iturri J, Paez J, Shafiq Z, Serrano C, d’Ischia M, del Campo A. Macromol. Chem. Phys., 2014, 215(24): 2403.

doi: 10.1002/macp.v215.24     URL    
[2]
Oh K H, Choo M J, Lee H, Park K H, Park J K, Choi J W. J. Mater. Chem. A, 2013, 1(46): 14484.

doi: 10.1039/c3ta13166a     URL    
[3]
Lee H, Lee Y, Statz A R, Rho J, Park T G, Messersmith P B. Adv. Mater., 2008, 20(9): 1619.

doi: 10.1002/(ISSN)1521-4095     URL    
[4]
Waite J H, Tanzer M L. Science, 1981, 212(4498): 1038.

pmid: 17779975
[5]
Waite J H. J. Exp. Biol., 2017, 220(4): 517.

doi: 10.1242/jeb.134056     URL    
[6]
Anderson T H, Yu J, Estrada A, Hammer M U, Waite J H, Israelachvili J N. Adv. Funct. Mater., 2010, 20(23): 4196.

pmid: 21603098
[7]
Yu J, Wei W, Menyo M S, Masic A, Waite J H, Israelachvili J N. Biomacromolecules, 2013, 14(4): 1072.

doi: 10.1021/bm301908y     URL    
[8]
SedÓ J, Saiz-Poseu J, BusquÉ F, Ruiz-Molina D. Adv. Mater., 2013, 25(5): 653.

doi: 10.1002/adma.201202343     URL    
[9]
Madhurakkat Perikamana S K, Lee J, Lee Y B, Shin Y M, Lee E J, Mikos A G, Shin H. Biomacromolecules, 2015, 16(9): 2541.

doi: 10.1021/acs.biomac.5b00852     pmid: 26280621
[10]
Wei W, Yu J, Broomell C, Israelachvili J N, Waite J H. J. Am. Chem. Soc., 2013, 135(1): 377.

doi: 10.1021/ja309590f     pmid: 23214725
[11]
Kord Forooshani P, Lee B P. J. Polym. Sci. A: Polym. Chem., 2017, 55(1): 9.

pmid: 27917020
[12]
Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40(7): 4244.

doi: 10.1039/c1cs15026j     URL    
[13]
Liu J, Yang Q L, Xu J J, Liu K S, Guo L, Jiang L. Progress in Chemistry, 2012, 24(10): 1946.
( 刘娟, 杨青林, 徐晶晶, 刘克松, 郭林, 江雷. 化学进展, 2012, 24(10): 1946.)
[14]
Wang D D, Xu P P, Wang S S. Chem. Eng. Equip., 2018(6): 208.
( 汪丹丹, 徐平平, 王硕硕. 化学工程与装备, 2018(6): 208.)
[15]
Lin M, Wan X B, Mu Y B. Polym. Bull., 2020(1): 1.
( 林美, 万晓波, 穆有炳. 高分子通报, 2020(1): 1.)
[16]
Liu J P, Jiang Z, Yang B Y, Jin L H, Zhang Q Q. Chin. J. Biochem. Mol. Biol., 2007, 23(11): 899.
( 刘加鹏, 蒋臻, 杨丙晔, 金利华, 张其清. 中国生物化学与分子生物学报, 2007, 23(11): 899.)
[17]
Gao M, Zhang C H, Zhou J, Wang X L, Gu M. Journal of Anhui Agri. Sci., 2011, 39(32): 19860.
( 高敏, 张长虹, 周俊, 王小磊, 顾铭. 安徽农业科学, 2011, 39(32): 19860.)
[18]
Wang C P, Lin C G, Zhang J W, Chen S G. Dev. Appl. Mater., 2014, 29(4): 101.
( 王彩萍, 蔺存国, 张金伟, 陈守刚. 材料开发与应用, 2014, 29(4): 101.)
[19]
Taylor S W, Waite J H, Ross M M, Shabanowitz J, Hunt D F. J. Am. Chem. Soc., 1994, 116(23): 10803.

doi: 10.1021/ja00102a063     URL    
[20]
Kim H J, Hwang B H, Lim S, Choi B H, Kang S H, Cha H J. Biomaterials, 2015, 72: 104.

doi: 10.1016/j.biomaterials.2015.08.055     URL    
[21]
Hwang D S, Zeng H B, Srivastava A, Krogstad D V, Tirrell M, Israelachvili J N, Waite J H. Soft Matter, 2010, 6(14): 3232.

doi: 10.1039/C002632H     pmid: 21544267
[22]
Lim S, Choi Y S, Kang D G, Song Y H, Cha H J. Biomaterials, 2010, 31(13): 3715.

doi: 10.1016/j.biomaterials.2010.01.063     URL    
[23]
Balkenende D W R, Winkler S M, Messersmith P B. Eur. Polym. J., 2019, 116: 134.

doi: 10.1016/j.eurpolymj.2019.03.059     pmid: 32831361
[24]
Waite J H. Int. J. Biol. Macromol., 1990, 12(2): 139.

pmid: 2127695
[25]
Inoue K, Takeuchi Y, Miki D, Odo S. J. Biol. Chem., 1995, 270(12): 6698.

pmid: 7896812
[26]
Li L, Zeng H B. Biotribology, 2016, 5: 44.

doi: 10.1016/j.biotri.2015.09.004     URL    
[27]
Hwang D S, Zeng H B, Masic A, Harrington M J, Israelachvili J N, Waite J H. J. Biol. Chem., 2010, 285(33): 25850.

doi: 10.1074/jbc.M110.133157     pmid: 20566644
[28]
Hofman A H, van Hees I A, Yang J, Kamperman M. Adv. Mater., 2018, 30(19): 1704640.

doi: 10.1002/adma.v30.19     URL    
[29]
Bhagat V, Becker M L. Biomacromolecules, 2017, 18(10): 3009.

doi: 10.1021/acs.biomac.7b00969     URL    
[30]
Li L, Smitthipong W, Zeng H B. Polym. Chem., 2015, 6(3): 353.

doi: 10.1039/C4PY01415D     URL    
[31]
Kim S, Huang J, Lee Y, Dutta S, Yoo H Y, Jung Y M, Jho Y, Zeng H B, Hwang D S. PNAS, 2016, 113(7): E847. DOI: 10.1073/pnas.1521521113.

doi: 10.1073/pnas.1521521113     URL    
[32]
Miller D R, Das S, Huang K Y, Han S, Israelachvili J N, Waite J H. ACS Biomater. Sci. Eng., 2015, 1(11): 1121.

pmid: 26618194
[33]
Zhao H, Waite J H. Biochemistry, 2006, 45(47): 14223.

pmid: 17115717
[34]
Brubaker C E, Messersmith P B. Biomacromolecules, 2011, 12(12): 4326.

doi: 10.1021/bm201261d     pmid: 22059927
[35]
Zhao H, Waite J H. J. Biol. Chem., 2006, 281(36): 26150.

pmid: 16844688
[36]
Chen T, Chen Y J, Rehman H U, Chen Z, Yang Z, Wang M, Li H, Liu H Z. ACS Appl. Mater. Interfaces, 2018, 10(39): 33523.

doi: 10.1021/acsami.8b10064     URL    
[37]
Han L, Yan L W, Wang M H, Wang K F, Fang L M, Zhou J, Fang J, Ren F Z, Lu X. Chem. Mater., 2018, 30(16): 5561.

doi: 10.1021/acs.chemmater.8b01446     URL    
[38]
Krogsgaard M, Behrens M A, Pedersen J S, Birkedal H. Biomacromolecules, 2013, 14(2): 297.

doi: 10.1021/bm301844u     pmid: 23347052
[39]
Wilke P, Helfricht N, Mark A, Papastavrou G, Faivre D, Börner H G. J. Am. Chem. Soc., 2014, 136(36): 12667.

doi: 10.1021/ja505413e     URL    
[40]
Kim M, Chung H. Polym. Chem., 2017, 8(40): 6300.

doi: 10.1039/C7PY01535F     URL    
[41]
Olivieri M P, Wollman R M, Alderfer J L. J. Pept. Res., 2009, 50(6): 436.

doi: 10.1111/j.1399-3011.1997.tb01206.x     URL    
[42]
McDowell L M, Burzio L A, Waite J H, Schaefer J. J. Biol. Chem., 1999, 274(29): 20293.

pmid: 10400649
[43]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.

doi: 10.1126/science.1147241     URL    
[44]
Chi Y C, Emre F, Motan N N. Macromolecules, 2016, 39(5): 1740.

doi: 10.1021/ma0518959     URL    
[45]
David R, Eli S. Front. Bioeng. Biotech., 2016, 4(20): 3065.
[46]
Danner E W, Kan Y J, Hammer M U, Israelachvili J N, Waite J H. Biochemistry, 2012, 51(33): 6511.

doi: 10.1021/bi3002538     pmid: 22873939
[47]
Merritt M E, Christensen A M, Kramer K J, Hopkins T L, Schaefer J. J. Am. Chem. Soc., 1996, 118(45): 11278.

doi: 10.1021/ja961621o     URL    
[48]
Holten-Andersen N, Zhao H, Waite J H. Biochemistry, 2009, 48(12): 2752.

doi: 10.1021/bi900018m     pmid: 19220048
[49]
Papov V V, Diamond T V, Biemann K, Waite J H. J. Biol. Chem., 1995, 270(34): 20183.

pmid: 7650037
[50]
Eric P,. Holowka T J D. Macromol. Biosci., 2010, 10(5): 496.

doi: 10.1002/mabi.200900390     pmid: 20135627
[51]
Yu M E, Hwang J, Deming T J. J. Am. Chem. Soc., 1999, 121(24): 5825.

doi: 10.1021/ja990469y     URL    
[52]
Waite J H. Ann., N Y. Acad. Sci., 1999, 875: 301.

doi: 10.1111/nyas.1999.875.issue-1     URL    
[53]
Fantner G E, Oroudjev E, Schitter G, Golde L S, Thurner P, Finch M M, Turner P, Gutsmann T, Morse D E, Hansma H, Hansma P K. Biophys. J., 2006, 90(4): 1411.

pmid: 16326907
[54]
Stewart R J, Ransom T C, Hlady V. J. Polym. Sci. B Polym. Phys., 2011, 49(11): 757.

doi: 10.1002/polb.22256     URL    
[55]
Mian S A, Gao X F, Nagase S, Jang J. Theor. Chem. Acc., 2011, 1302-3: 333.
[56]
Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248): 628.

doi: 10.1126/science.aab0556     pmid: 26250681
[57]
Wilker J J. Science, 2015, 349(6248): 582.

doi: 10.1126/science.aac8174     URL    
[58]
Rapp M V, Maier G P, Dobbs H A, Higdon N J, Waite J H, Butler A, Israelachvili J N. J. Am. Chem. Soc., 2016, 138(29): 9013.

doi: 10.1021/jacs.6b03453     URL    
[59]
Wang J, Liu C S, Lu X, Yin M. Biomaterials, 2007, 28(23): 3456.

doi: 10.1016/j.biomaterials.2007.04.009     URL    
[60]
Silverman H G, Roberto F F. Mar. Biotechnol., 2007, 9(6): 661.

doi: 10.1007/s10126-007-9053-x     pmid: 17990038
[61]
Brennan M J, Kilbride B F, Wilker J J, Liu J C. Biomaterials, 2017, 124: 116.

doi: S0142-9612(17)30053-4     pmid: 28192773
[62]
Gong C, Lu C C, Li B Q, Shan M, Wu G L. J. Biomed. Mater. Res., 2017, 105(4): 1000.

doi: 10.1002/jbm.v105.4     URL    
[63]
Lu D D, Li Y F, Li T, Zhang Y Y, Dou F J, Wang X Y, Zhao X L, Ma H C, Guan X L, Wei Q B, Lei Z Q. J. Appl. Polym. Sci., 2017, 134(16): 44729.
[64]
Wang G, Huang X, Jiang P. Sci. Rep-UK., 2017, 7(2): 43071.
[65]
Meredith H J, Jenkins C L, Wilker J J. Adv. Funct. Mater., 2014, 24(21): 3259.

doi: 10.1002/adfm.201303536     URL    
[66]
Zhou J J, Defante A P, Lin F, Xu Y, Yu J Y, Gao Y H, Childers E, Dhinojwala A, Becker M L. Biomacromolecules, 2015, 16(1): 266.

doi: 10.1021/bm501456g     URL    
[67]
Burke S A, Ritter-Jones M, Lee B P, Messersmith P B. Biomed. Mater., 2007, 2(4): 203.

doi: 10.1088/1748-6041/2/4/001     pmid: 18458476
[68]
White J D, Wilker J J. Macromolecules, 2011, 44(13): 5085.

doi: 10.1021/ma201044x     URL    
[69]
Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y H, Khalilpour A, Li B Y, Zhang Y S, Annabi N, Khademhosseini A. ACS Appl. Mater. Interfaces, 2017, 9(13): 11428.

doi: 10.1021/acsami.6b16779     URL    
[70]
Wei W, Tan Y, Martinez Rodriguez N R, Yu J, Israelachvili J N, Waite J H. Acta Biomater., 2014, 10(4): 1663.

doi: 10.1016/j.actbio.2013.09.007     pmid: 24060881
[71]
Shao H, Stewart R J. Adv. Mater., 2010, 22(6): 729.

doi: 10.1002/adma.200902380    
[72]
Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H. Nat. Mater., 2016, 15(4): 407.

doi: 10.1038/nmat4539     URL    
[73]
Kim S, Huang J, Lee Y, Dutta S, Yoo H Y, Jung Y M, Jho Y, Zeng H B, Hwang D S. PNAS, 2016, 113(7): E847.

doi: 10.1073/pnas.1521521113     URL    
[74]
Annabi N, Tamayol A, Shin S R, Ghaemmaghami A M, Peppas N A, Khademhosseini A. Nano Today, 2014, 9(5): 574.

pmid: 25530795
[75]
Gao T T, Chang D, Liu F Q, Gao G. Jorunal of Functional Materials, 2016, 47(z1): 72.
( 高婷婷, 常丹, 刘凤岐, 高歌. 功能材料, 2016, 47(z1): 72.)
[76]
Hoffman A S. Adv. Drug Deliv. Rev., 2012, 64: 18.

doi: 10.1016/j.addr.2012.09.010     URL    
[77]
CalÓ E, Khutoryanskiy V V. Eur. Polym. J., 2015, 65: 252.

doi: 10.1016/j.eurpolymj.2014.11.024     URL    
[78]
Mehdizadeh M, Weng H, Gyawali D, Tang L P, Yang J. Biomaterials, 2012, 33(32): 7972.

doi: 10.1016/j.biomaterials.2012.07.055     URL    
[79]
Lee C, Shin J, Lee J S, Byun E, Ryu J H, Um S H, Kim D I, Lee H, Cho S W. Biomacromolecules, 2013, 14(6): 2004.

doi: 10.1021/bm400352d     URL    
[80]
Chan Choi Y, Choi J S, Jung Y J, Cho Y W. J. Mater. Chem. B, 2014, 2(2): 201.

doi: 10.1039/C3TB20696C     URL    
[81]
Zhang R, Peng H W, Zhou T X, Yao Y, Zhu X D, Bi B W, Zhang X, Liu B X, Niu L Y, Wang W Q. ACS Appl. Polym. Mater., 2019, 1(11): 2883.

doi: 10.1021/acsapm.9b00590     URL    
[82]
Guo Q, Chen J S, Wang J L, Zeng H B, Yu J. Nanoscale, 2020, 12(3): 1307.

doi: 10.1039/c9nr09780e     pmid: 31907498
[83]
Chen Y P, Meng J X, Gu Z, Wan X Z, Jiang L, Wang S T. Adv. Funct. Mater., 2020, 30(5): 1905287.

doi: 10.1002/adfm.v30.5     URL    
[84]
Lee Y, Chung H J, Yeo S, Ahn C H, Lee H, Messersmith P B, Park T G. Soft Matter, 2010, 6(5): 977.

doi: 10.1039/b919944f     URL    
[85]
Narkar A R, Barker B, Clisch M, Jiang J F, Lee B P. Chem. Mater., 2016, 28(15): 5432.

pmid: 27551163
[86]
Ma Y F, Ma S H, Wu Y, Pei X W, Gorb S N, Wang Z K, Liu W M, Zhou F. Adv. Mater., 2018, 30(30): 1870222.

doi: 10.1002/adma.v30.30     URL    
[87]
Xu R N, Ma S H, Wu Y, Lee H, Zhou F, Liu W M. Biomater. Sci., 2019, 7(9): 3599.

doi: 10.1039/C9BM00697D     URL    
[88]
Wang Z, Guo L F, Xiao H Y, Cong H, Wang S T. Mater. Horiz., 2020, 7(1): 282.

doi: 10.1039/C9MH01148J     URL    
[89]
Li X, Deng Y, Lai J L, Zhao G, Dong S Y. J. Am. Chem. Soc., 2020, 142(11): 5371.

doi: 10.1021/jacs.0c00520     URL    
[90]
DompÉ M, Cedano-Serrano F J, Heckert O, van den Heuvel N, van der Gucht J, Tran Y, Hourdet D, Creton C, Kamperman M. Adv. Mater., 2019, 31(21): 1808179.

doi: 10.1002/adma.v31.21     URL    
[91]
Sun G X, Li Z J, Liang R, Weng L T, Zhang L N. Nat. Commun., 2016, 7(1): 1.
[92]
Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. Adv. Mater., 2007, 19(12): 1622.

doi: 10.1002/(ISSN)1521-4095     URL    
[93]
Feng J F, Chen J L, Guo K, Hou J B, Zhou X L, Huang S, Li B J, Zhang S. ACS Appl. Mater. Interfaces, 2018, 10(46): 40238.

doi: 10.1021/acsami.8b12886     URL    
[94]
Thoniyot P, Tan M J, Karim A A, Young D J, Loh X J. Adv. Sci., 2015, 21-2: 1400010.
[95]
Hennink W E, van Nostrum C F. Adv. Drug Deliv. Rev., 2012, 64: 223.

doi: 10.1016/j.addr.2012.09.009     URL    
[96]
Xie J J, Huang K, He G J, Ren S Z. Chemistry and Adhesion, 2014, 36(01): 5.
( 谢建军, 黄凯, 贺国京, 任森智. 化学与黏合, 2014, 36(01): 5.)
[97]
Luo Y T, Luo X Q, Liang J F. Proceedings of Ship Maintenance Theory and Application, 2002-11-01.
( 罗运同, 罗锡清, 梁锦芳.船舶维修理论与应用论文集, 2002-11-01.)
[98]
Bouten P J M, Zonjee M, Bender J, Yauw S T K, van Goor H, van Hest J C M, Hoogenboom R. Prog. Polym. Sci., 2014, 39(7): 1375.

doi: 10.1016/j.progpolymsci.2014.02.001     URL    
[99]
Cope C, Lee K, Stern H, Pennington D. Plast. Reconstr. Surg., 2000, 106(1): 107.

pmid: 10883621
[100]
Turan T, Özçelik D, Kuran I, Sadikoğlu B, Baş L, Şan T, Sungun A. Plast. Reconstr. Surg., 2001, 107(2): 463.

pmid: 11214062
[101]
Donkerwolcke M, Burny F, Muster D. Biomaterials, 1998, 19(16): 1461.

pmid: 9794519
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[3] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[4] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[5] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[6] 刘娟, 杨青林*, 徐晶晶, 刘克松*, 郭林, 江雷. 仿壁虎和贻贝黏附材料[J]. 化学进展, 2012, (10): 1946-1954.
阅读次数
全文


摘要

基于贻贝启发的水下仿生胶黏剂