English
新闻公告
More
化学进展 前一篇   

• 综述与评论 •

大气有机硫酸酯化合物的特征及形成机制

马烨1, 陈建民1, 王琳1,2**   

  1. 1. 复旦大学环境科学与工程系 上海 200433;
    2. 南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室 南京 210044
  • 收稿日期:2012-03-01 修回日期:2012-05-01 出版日期:2012-11-24 发布日期:2012-10-23
  • 基金资助:

    国家自然科学基金项目(No. 21190053, 21107015)、上海市浦江人才计划(No. 11PJ1401100)和江苏省大气环境监测与污染控制高技术研究重点实验室开放基金(No. KHK1101)资助

Characteristics and Formation Mechanisms of Atmospheric Organosulfates

Ma Ye1, Chen Jianmin1, Wang Lin1,2**   

  1. 1. Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China;
    2. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2012-03-01 Revised:2012-05-01 Online:2012-11-24 Published:2012-10-23
本文总结了大气二次有机气溶胶的重要组分——有机硫酸酯化合物的特征及其形成机制的研究进展,并对相关研究进行了展望。近年来,通过实验室模拟与欧美地区的实际大气气溶胶样品的分析对比,发现有机硫酸酯化合物多由异戊二烯、α-/β-蒎烯以及其他单萜烯和倍半萜烯等经OH自由基、NO3自由基或臭氧氧化后的反应产物与硫酸或硫酸盐气溶胶进一步反应而形成。有机硫酸酯化合物也可以通过硫酸或硫酸盐气溶胶反应性获取乙二醛等羰基化合物而形成。硫酸盐气溶胶酸性的增强会促进有机硫酸酯化合物的生成。有机硫酸酯化合物在水溶液中比较稳定,强酸性条件下才会发生水解作用。目前有机硫酸酯化合物的有效检测手段是离线电喷雾电离质谱(electrospray ionization mass spectrometry, ESI-MS)或在线气溶胶质谱(aerosol mass spectrometry, AMS)方法。
Atmospheric organosulfates refer to sulfate esters and their derivatives that have been identified in ambient secondary organic aerosol(SOA) samples. Recent laboratory and field studies show that organosulfates are derived from the reactions of particulate sulfates or sulfuric acid with compounds formed from hydroxyl radical(OH)/nitrate radical(NO3)/ozone(O3)-initiated reactions of isoprene, α-/β-pinene, and other monoterpenes and sesquiterpenes. Organosulfates can also be formed through reactive uptake of carbonyls such as glyoxal by particulate sulfates or sulfuric acid. Enhanced acidity of the sulfate seed particles favors the production of organosulfate. Hydrolysis of organosulfates is slow unless in a highly acidic solution. Offline electrospray ionization mass spectrometry(ESI-MS) and online aerosol mass spectrometry(AMS) are useful methods to detect atmospheric organosulfates. Contents
1 Introduction
2 Identification of atmospheric organosulfates
2.1 Organosulfates observed in the atmosphere
2.2 Temporal profiles of organosulfates
3 Laboratory studies of organosulfates
3.1 Organosulfates derived from isoprene
3.2 Organosulfates derived from α-/β-pinene
3.3 Organosulfates derived from other monoterpenes and sesquiterpenes
3.4 Organosulfates formation via reactive uptake of carbonyls
3.5 Hydrolysis of organosulfates and organonitrates
4 Analytical methods of organosulfates
5 Outlook

中图分类号: 

()
[1] Andreae M O, Crutzen P J. Science, 1997, 276: 1052-1058
[2] Haywood J, Boucher O. Rev. Geophys., 2000, 38: 513-543
[3] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press: 2007
[4] Tanner R L, Parkhurst W. J. Air Waste Manag. Assoc., 2000, 50: 1299-1307
[5] Dockery D W, Pope C A III, Xu X, Spengler J D, Ware J H, Fay M E, Ferris B G Jr, Speizer F E. N. Engl. J. Med., 1993, 329: 1753-1759
[6] Laden F, Schwartz J, Speizer F E, Dockery D W. Am. J. Respir. Crit. Care Med., 2006, 173: 667-672
[7] Pope III C A, Dockery D W. J. Air Waste Manag. Assoc., 2006, 56: 709-742
[8] Goldstein A H, Galbally I E. Environ. Sci. Technol., 2007, 41: 1514-1521
[9] Ravishankara A R. Science, 1997, 276: 1058-1065
[10] Jang M S, Czoschke N M, Lee S, Kamens R M. Science, 2002, 298: 814-817
[11] Romero F, Oehme M. J. Atmos. Chem., 2005, 52: 283-294
[12] Reemtsma T, These A, Venkatachari P, Xia X Y, Hopke P K, Springer A, Linscheid M. Anal. Chem., 2006, 78: 299-8304
[13] Surratt J D, Kroll J H, Kleindienst T E, Edney E O, Claeys M, Sorooshian A, Ng N L, Offenberg J H, Lewandowski M, Jaoui M, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 2007, 41: 517-527
[14] Surratt J D, Gómez-González Y, Chan A W H, Vermeylen R, Shahgholi M, Kleindienst T E, Edney E O, Offenberg J H, Lewandowski, Jaoui M, Maenhaut W, Claeys M, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2008, 112: 8345-8378
[15] Gómez-González Y, Surratt J D, Cuyckens F, Szmigielski R, Vermeylen R, Jaoui M, Lewandowski M, Offenberg J H, Kleindienst T E, Edney E O, Blockhuys F, Van Alsenoy C, Maenhaut W, Claeys M. J. Mass. Spectrom., 2008, 43: 371-382
[16] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y X, Prather K A. Environ. Sci. Technol., 2011, 45: 5105-5111
[17] Iinuma Y, Müller C, Berndt T, Bge O, Claeys M, Herrmann H. Environ. Sci. Technol., 2007, 41: 6678-6683
[18] Iinuma Y, Müller C, Bge O, Gnauk T, Herrmann H. Atmos. Environ., 2007, 41: 5571-5583
[19] Chan M N, Surratt J D, Chan A W H, Schilling K, Offenberg J H, Lewandowski M, Edney E O, Kleindienst T E, Jaoui M, Edgerton E S, Tanner R L, Shaw S L, Zheng M, Knipping E M, Seinfeld J H. Atmos. Chem. Phys., 2011, 11: 1735-1751
[20] Liggio J, Li S M, Mclaren R. Environ. Sci. Technol., 2005, 39: 1532-1541
[21] Liggio J, Li S M. J. Geophys. Res., 2006, 111: art. no. D24303
[22] Liggio J, Li S M. Geophys. Res. Lett., 2006, 33: art. no. L13808
[23] Perri M J, Lim Y B, Seitzinger S P, Turpin B J. Atmos. Environ., 2010, 44: 2658-2664
[24] Olson C N, Galloway M M, Yu G, Hedman C J, Lockett M R, Yoon T, Stone E A, Smith L M, Keutsch F N. Environ. Sci. Technol., 2011, 45: 6468-6474
[25] Hawkins L N, Russell L M, Covert D S, Quinn P K, Bates T S. J. Geophys. Res., 2010, 115: art. no. D13201
[26] Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi X G, Farhat Y, Surratt J D, Gómez-González Y, Sciare J, Maenhaut W. J. Aerosol. Sci., 2010, 41: 13-22
[27] Altieri K E, Turpin B J, Seitzinger S P. Atmos. Chem. Phys., 2009, 9: 2533-2542
[28] Mazzoleni L R. Ehrmann B M. Shen X H. Marshall A G. Collett J L. Environ. Sci. Technol., 2010, 44: 3690-3697
[29] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y X, Prather K A. Environ. Sci. Technol., 2011, 45: 8648-8655
[30] Minerath E C, Elrod M J. Environ. Sci. Technol., 2009, 43: 1386-1392
[31] Minerath E C, Schultz M P, Elrod M J. Environ. Sci. Technol., 2009, 43: 8133-8139
[32] Wang X F, Gao S, Yang X, Chen H, Chen J M, Zhuang G S, Surratt J D, Chan M N, Seinfeld J H. Environ. Sci. Technol., 2010, 44: 4441-4446
[33] Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P I, Geron C. Atmos. Chem. Phys., 2006, 6: 3181-3210
[34] Hallquist M, Wenger J C, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N M, George C, Goldstein A H, Hamilton J F, Herrmann H, Hoffmann T, Iinuma Y, Jang M., Jenkin M E, Jimenez J L, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel Th F, Monod A, Prevot A S H, Seinfeld J H, Surratt J D, Szmigielski R, Wildt J. Atmos. Chem. Phys., 2009, 9: 5155-5236
[35] Carlton A G, Wiedinmyer C, Kroll J H. Atmos. Chem. Phys., 2009, 9: 4987-5005
[36] Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae M O, Artaxo P. Science, 2004, 303: 1173-1176
[37] Paulot F, Crounse J D, Kjaergaard H G, Kürten A, St Clair J M, Seinfeld J H, Wennberg P O. Science, 2009, 325: 730-733
[38] Surratt J D, Chan A W H, Eddingsaas N C, Chan M N, Loza C L, Kwan A J, Hersey S P, Flagan R C, Wennberg P O, Seinfeld J H. Proc. Natl. Acad. Sci. USA, 2010, 107: 6640-6645
[39] Lin Y H, Zhang Z, Docherty K S, Zhang H F, Budisulistiorini S H, Rubitschun C L, Shaw S, Knipping Eladio, Edgerton E S, Kleindienst T E, Gold A, Surratt J D. Environ. Sci. Technol., 2012, 46(1): 250-258
[40] Ng N L, Kwan A J, Surratt J D, Chan A W H, Chhabra P S, Sorooshian A, Pye H O T, Crounse J D, Wennberg P O, Flagan R C, Seinfeld J H. Atmos. Chem. Phys., 2008, 8: 4117-4140
[41] Nozière B, Ekstrm S, Alsberg T, Holmstrm S. Geophys. Res. Lett., 2010, 37: art. no. L05806
[42] Jaoui M, Corse E, Kleindienst T E, Offenberg J H, Lewandowski M, Edney E O. Environ. Sci. Technol., 2006, 40: 3819-3828
[43] Lal V, Khalizov A F, Lin Y, Galvan M D, Connell B T, Zhang R Y. J. Phys. Chem. A., 2012, 116(24): 6078-6090
[44] Iinuma Y, Bge O, Kahnt A, Herrmann H. Phys. Chem. Chem. Phys., 2009, 11: 7985-7997
[45] Jang M, Kamens R M. Environ. Sci. Technol., 2001, 35: 3626-3639
[46] Arey J, Obermeyer G, Aschmantn S M, Chattopadhyay S, Cusick R D, Atkinson R. Environ. Sci. Technol., 2009, 43: 683-689
[47] Stevens P S, Seymour E, Li Z. J. Phys. Chem. A., 2000, 104: 5989-5997
[48] Fick J, Pommer L, Nilsson C, Andersson B. Atmos. Environ., 2003, 37: 4087-4096
[49] Hu K S, Darer A I, Elrod M J. Atmos. Chem. Phys., 2011, 11: 8307-8320
[50] Adam I D, Neil C C, Alison E O, Matthew J E. Environ. Sci. Technol., 2011, 11: 1895-1902
[51] Farmer D K, Matsunaga A, Docherty K S, Surratt J D, Seinfeld J H, Ziemann P J, Jimenez J L. Proc. Natl. Acad. Sci. USA, 2010, 107: 6670-6675
[52] Docherty K S, Aiken A C, Huffman J A, Ulbrich I M, DeCarlo P F, Sueper D, Worsnop D R, Snyder D C, Peltier R E, Weber R J, Grover B D, Eatough D J, Williams B J, Goldstein A H, Ziemann P J, Jimenez J L. Atmos. Chem. Phys., 2011, 11: 12387-12420
[53] Froyd K D, Murphy S M, Murphy D M, de Gouw J A, Eddingsaas N C, Wennberg P O. Proc. Natl. Acad. Sci. USA, 2010, 107: 21360-21365
[54] Ehn M, Junninen H, Petaja T, Kurten T, Kerminen V M, Schobesberger S, Manninen H E, Ortega I K, Vehkamaki H, Kulmala M, Worsnop D R. Atmos. Chem. Phys., 2010, 10: 8513-8530
[55] Wang L, Khalizov A F, Zheng J, Xu W, Ma Y, Lal V, Zhang R Y. Nat. Geosci., 2010, 3: 238-242
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[3] 金梨娟, 陈宝梁*. 环境中卤代有机污染物的自然来源、背景浓度及形成机理[J]. 化学进展, 2017, 29(9): 1093-1114.
[4] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[5] 方齐乐, 陈宝梁*. 环境中高氯酸盐的自然来源、形成机制及其归趋行为[J]. 化学进展, 2012, (10): 2040-2053.
[6] 谢绍东 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制*[J]. 化学进展, 2010, 22(04): 727-733.
[7] 王振亚,郝立庆,张为俊. 二次有机气溶胶的气体/粒子分配理论*[J]. 化学进展, 2007, 19(01): 93-100.
[8] 王振亚,郝立庆,张为俊. 二次有机气溶胶形成的化学过程*[J]. 化学进展, 2005, 17(04): 732-739.
[9] 刘稷燕,江桂斌. 食品中的丙烯酰胺及其形成机制*[J]. 化学进展, 2004, 16(06): 1000-.