English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

生物法制备2,3-丁二醇的最新进展

付晶, 王萌, 刘维喜, 陈涛*   

  1. 天津大学化工学院 系统生物工程教育部重点实验室 天津 300072
  • 收稿日期:2012-04-01 修回日期:2012-07-01 出版日期:2012-11-24 发布日期:2012-10-23
  • 基金资助:

    天津市自然科学基金项目(No.12JCYBJC12900)、国家自然科学基金项目(No.21176182)、教育部博士点基金项目(No.20100032120014) 和国家重点基础研究发展计划(973)项目(No.2011CBA00804, 2012CB725203)资助

Latest Advances of Microbial Production of 2,3-Butanediol

Fu Jing, Wang Meng, Liu Weixi, Chen Tao   

  1. Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2012-04-01 Revised:2012-07-01 Online:2012-11-24 Published:2012-10-23
2,3-丁二醇及其衍生物作为重要的液体燃料和化工原料,具有广阔的工业应用前景。高效、经济的2,3-丁二醇生物制备方法,对我国低碳经济和循环经济的建设具有重要的促进作用。针对近三年间生物法制备2,3-丁二醇领域的最新研究成果,本文综述了当前国内外学者在该领域研究的热点,即关键基因和酶的鉴定、新菌种的开发和代谢工程改造、同步糖化和共培养等发酵条件的优化、耦合工艺等分离纯化技术改进等。使用非致病的高产单一2,3-丁二醇手性异构体的代谢工程菌株,作为细胞炼制工厂,利用廉价的非粮原料作底物,采用经济、简单、环保的分离纯化方式,是2,3-丁二醇产业化发展的可靠保障。
As important liquid fuel and chemical raw materials, 2,3-butanediol and its derivatives have broad industrial application prospects. Economical and efficient 2,3-butanediol microbial production has significant impetus to the low-carbon and circular economy development of China. Focusing on the latest achievements in the microbial production of 2,3-butanediol, this review summarizes the hot spots of the researchers’ attentions nowadays, which can be divided into four parts: identification of the key genes and enzymes involved in the 2,3-butanediol metabolic pathway, development of new strains and metabolic engineered strains for high yield or chiral 2,3-butanediol production, strategies for fermentation optimization such as simultaneous saccharification and fermentation, and technology improvement for combining process involved in 2,3-butanediol recovering processing. These achievements in the last three years are classified and discussed with state-of-art views. At last, guidelines for future studies are also proposed. It is pointed out that future research should focus on new strains, new genes and enzymes, new metabolic pathways, new cheap and renewable resources for substrate, and new technology for fermentation and separation. There’s no doubt that metabolic engineered class Ⅰ strains, which can utilize cost-effective and renewable substrates to lower the raw materials cost producing chiral 2,3-butanediol with high yield and productivity, should be favored. Besides, new technology in separation and purification process must be developed and improved to lower the cost of downstream processing. Contents
1 Introduction
2 Identification of the key genes and enzymes involved in the metabolic pathway of 2,3-butanediol
2.1 Metabolic pathway analysis
2.2 Identification of the key genes and enzymes
3 Strains and their improvements
3.1 Major microorganisms producing 2,3-butanediol
3.2 Metabolic engineering of the microorganisms for high yield and productivity
3.3 Construction of the metabolic engineered microorganisms for single isomer production
4 Strategy of optimization for fermentation
4.1 Parameter optimization of culture environment
4.2 Economic fermentation substrates
4.3 Simultaneous saccharification and fermentation
4.4 Co-culture
5 Optimization of separation and purification process
6 Conclusion and outlook

中图分类号: 

()
[1] Jarboe L R, Zhang X, Wang X, Moore J C, Shanmugam K, Ingram L O. Journal of Biomedicine and Biotechnology, 2010, 2010: art. no. 761042
[2] Dellomonaco C, Fava F, Gonzalez R. Microb. Cell Fact., 2010, 9(1): art. no. 3
[3] Celińska E, Grajek W. Biotechnol. Adv., 2009, 27(6): 715-725
[4] 戴建英(Dai J Y), 孙亚琴(Sun Y Q), 孙丽慧(Sun L H), 李丹(Li D), 董悦生(Dong R S), 修志龙(Xiu Z L). 过程工程学报(The Chinese Journal of Process Engineering), 2010, 10(1): 200-208
[5] 纪晓俊(Ji X J), 聂志奎(Nie J K), 黎志勇(Li Z Y), 高振(Gao Z), 黄和(Huang H). 化学进展(Process in Chemistry), 2010, 22(12): 2450-2461
[6] Ji X J, Huang H, Ouyang P K. Biotechnol. Adv., 2011, doi: 10.1016/j. biotechadv. 2011, 29(3): 351-364
[7] Magee R J, Kosaric N. Adv. Appl. Microbiol, 1987, 32(89): 161
[8] González E, Fernández M R, Marco D, Calam E, Sumoy L, Parés X, Dequin S, Biosca J A. Appl. Environ. Microb., 2010, 76(3): 670-679
[9] Rao B, Zhang L Y, Sun J, Su G, Wei D, Chu J, Zhu J, Shen Y. Appl. Microbiol. Biot., 2012, 93(5): 2147-2159
[10] Yu B, Sun J, Bommareddy R R, Song L, Zeng A P. Appl. Environ. Microb., 2011, 77(12): 4230-4233
[11] Zhang G L, Wang C W, Li C. Biotechnol. Lett., 2012, 34(8): 1519-1523
[12] Shin S H, Kim S, Kim J Y, Lee S, Um Y, Oh M K, Kim Y R, Lee J, Yang K S. J. Bacteriol., 2012, 194(10): 2736-2737
[13] Shin S H, Kim S, Kim J Y, Lee S, Um Y, Oh M K, Kim Y R, Lee J, Yang K S. J. Bacteriol., 2012, 194(9): 2371-2372
[14] Xu Y, Wang A, Tao F, Su F, Tang H, Ma C, Xu P. J. Bacteriol., 2012, 194(4): 897-898
[15] Cho J H, Rathnasingh C, Song H, Chung B W, Lee H J, Seung D. Bioprocess and Biosystems Engineering, 2012, 35(7): 1081-1088
[16] Köpke M, Mihalcea C, Liew F M, Tizard J H, Ali M S, Conolly J J, Al-Sinawi B, Simpson S D. Appl. Environ. Microb., 2011, 77(15): 5467-5475
[17] Metsoviti M, Paramithiotis S, Drosinos E, Galiotou-Panayotou M, Nychas G, AnPing Z, Papanikolaou S. Engineering in Life Sciences, 2012, 12(1): 57-68
[18] Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P. Appl. Microbiol. Biot., 2009, 82(1): 49-57
[19] Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J. Bioresource. Technol., 2010, 101(6): 1961-1967
[20] Ji X J, Huang H, Zhu J G, Ren L J, Nie Z K, Du J, Li S. Appl. Microbiol. Biot., 2010, 85(6): 1751-1758
[21] Gaspar P, Neves A R, Gasson M J, Shearman C A, Santos H. Appl. Environ. Microb., 2011, 77(19): 6826-6835
[22] Jung MY, Ng C Y, Song H, Lee J, Oh M K. Appl. Microbiol. Biot., 2012, 95(2):461-469
[23] Wang Q, Chen T, Zhao X, Chamu J. Biotechnol. Bioeng., 2012, 109(7): 1610-1621
[24] Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K-i, Bisaria V S, Kondo A. Appl. Microbiol. Biot., 2012, 94(3): 651-658
[25] Ji X J, Nie Z K, Huang H, Ren L J, Peng C, Ouyang P K. Appl. Microbiol. Biot., 2011, 89(4): 1119-1125
[26] Zhang L, Sun J a, Hao Y, Zhu J, Chu J, Wei D, Shen Y. J. Ind. Microbiol. Biot, 2010, 37(8): 857-862
[27] Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P. Bioresource. Technol., 2011, 115:111-116
[28] Yan Y, Lee C C, Liao J C. Organic & Biomolecular Chemistry, 2009, 7(19): 3914-3917
[29] Nielsen D R, Yoon S H, Yuan C J, Prather K L J. Biotechnology Journal, 2010, 5(3): 274-284
[30] Li Z J, Jian J, Wei X X, Shen X W, Chen G Q. Appl. Microbiol. Biot., 2010, 87(6): 2001-2009
[31] Siemerink M A J, Kuit W, Lopez Contreras A M, Eggink G, van der Oost J, Kengen S W M. Appl. Environ. Microb., 2011, 77(8): 2582-2588
[32] Stephanopoulos G N, Aristidou AAN. 赵学明(Zhao X M), 白冬梅(Bai D M)译. 代谢工程--原理与方法(Metabolic engineering-Principles and Methodologise). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.182-240
[33] Lu M, Lee S, Kim B, Park C, Oh M, Park K, Lee S, Lee J. J. Microbiol. Biotechn, 2012, 22(5): 659-667
[34] Petrov K, Petrova P. Appl. Microbiol. Biot., 2010, 87(3): 943-949
[35] Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P. Appl. Microbiol. Biot., 2010, 87(3): 965-970
[36] Lee S, Kim B, Park K, Um Y, Lee J. Appl. Biochem. Biotech, 2012, 166(7):1801-1813
[37] Jiang L, Fang Z, Guo F, Yang L. Bioresource. Technol., 2012, 107(3): 405-410
[38] Cheng K K, Liu Q, Zhang J A, Li J P, Xu J M, Wang G H. Process. Biochem., 2010, 45(4): 613-616
[39] Shin S H, Kim S, Kim J Y, Lee S, Um Y, Oh M K, Kim Y R, Lee J, Yang K S. J. Bacteriol., 2012, 194(10): 2736-2737
[40] Zhao X, Song Y, Liu D. Enzyme Microb. Tech., 2011, 49(4): 413-419
[41] Sun L H, Wang X D, Dai J Y, Xiu Z L. Appl. Microbiol. Biot., 2009, 82(5): 847-852
[42] Liu Z, Qin J, Gao C, Hua D, Ma C, Li L, Wang Y, Xu P. Bioresource Technol., 2011, 102(22): 10741-10744
[43] Xiu Z L, Zeng A P. Appl. Microbiol. Biot., 2008, 78(6): 917-926
[44] Li Z, Teng H, Xiu Z. Process Biochem., 2010, 45(5): 731-737
[45] Dai J, Zhang Y, Xiu Z. Chinese J. Chem. Eng., 2011, 19(4): 682-686
[46] Anvari M, Khayati G. J. Ind. Microbiol. Biot, 2009, 36(2): 313-317
[47] Shao P, Kumar A. The Canadian Journal of Chemical Engineering, 2012, doi: 10.1002/cjce. 20698
[48] Li Y, Wu Y, Zhu J, Liu J. Biotechnology and Bioprocess Engineering, 2012, 17(2): 337-345
[1] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[2] 王白云, 王晓玥, 王智文, 陈涛, 赵学明. 大肠杆菌氧化还原辅因子代谢工程[J]. 化学进展, 2014, 26(09): 1609-1618.
[3] 纪晓俊, 聂志奎, 黎志勇, 高振, 黄和. 生物制造2,3-丁二醇:回顾与展望[J]. 化学进展, 2010, 22(12): 2450-2461.
[4] 王智文 马向辉 陈洵 赵学明 陈涛. 微生物代谢物组学的研究方法与进展*[J]. 化学进展, 2010, 22(01): 163-172.
[5] 何品晶,吕凡,邵立明,章骅. 稳定同位素表征有机物甲烷化代谢动力学*[J]. 化学进展, 2009, 21(0203): 540-549.
[6] 刘莉,孙君社,康利平,刘萍. 甜高粱茎秆生产燃料乙醇*[J]. 化学进展, 2007, 19(0708): 1109-1115.
[7] 张素平,颜涌捷,任铮伟,李庭琛. 纤维素制取乙醇技术*[J]. 化学进展, 2007, 19(0708): 1129-1133.
[8] 陈振明,刘金华,陶军华. 生物催化在绿色化学和新药开发中的应用*[J]. 化学进展, 2007, 19(012): 1919-1927.
阅读次数
全文


摘要

生物法制备2,3-丁二醇的最新进展