English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1093-1114 DOI: 10.7536/PC170563 前一篇   后一篇

• 综述 •

环境中卤代有机污染物的自然来源、背景浓度及形成机理

金梨娟, 陈宝梁*   

  1. 浙江大学环境科学系 浙江省有机污染过程与控制重点实验室 杭州 310058
  • 收稿日期:2017-05-31 修回日期:2017-08-08 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 陈宝梁,e-mail:blchen@zju.edu.cn E-mail:blchen@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21425730,21621005)资助

Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment

Lijuan Jin, Baoliang Chen*   

  1. Department of Environmental Science, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
  • Received:2017-05-31 Revised:2017-08-08 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21425730, 21621005).
卤代有机化合物(organohalogens,OHs)是一类典型有机污染物,其环境化学行为、控制方法及健康效应引起了全球的极大关注。目前主要关注人为排放OHs,而其自然来源往往被忽略。最近,环境中卤代有机物的自然来源不断被证实,且检出的OHs数量逐渐增加,但相关研究刚刚起步。卤代有机物的自然来源、背景浓度及其在环境中的迁移转化行为,对于正确评估其污染程度及环境影响、制定相关环境质量标准和系列安全浓度限值至关重要。本文详细归纳总结了卤代有机物的自然来源(包括海洋来源、陆地来源和其他来源等)、背景浓度、理化性质等;重点评述了天然卤代有机化合物(natural organohalogens,NOHs)形成的生物机制、非生物机制及其影响因素;分析了环境中NOHs的迁移转化及归趋行为;最后简介了环境中NOHs的定性与定量分析方法,并展望了未来的研究方向,急需加强天然卤代有机污染物的形成分子机理及环境化学行为的研究工作。
Organohalogens are one of the most important pollutants in the environment, of which the environmental chemical behavior, control methods and health effects have aroused great concern around the world, but they are always considered as anthropogenic compounds, such as polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), chlorophenols (CPs) and bromophenols (BPs). Currently, however more and more organohalogens are known to be produced naturally in the environment, and they are widely distributed in the environment, including marine, terrestrial, desert and polar region. Because of their high toxicity, persistence, bioaccumulation potential, and carcinogenicity, and sometimes even acting as environmental hormone substances, the majority of which have a bad effect on human causing mental and psychological harm, most of these pollutants are regulated in many countries. Moreover, natural organohalogens' origin, concentration level, formation mechanism and fate in environment are critical to correctly assess its environmental risk, as well as to set proper environmental standards and safe concentration threshold. As research of natural organohalogens is emerging rapidly all over the world, this review summarizes the marine, terrestrial and other sources of natural organohalogens, their physical and chemical properties, and concentration levels of some typical compounds. The formation mechanisms of biotic and abiotic pathways are highlighted. The transport and fate of natural organohalogens in the environment are discussed. Some general analytical methods are also mentioned in this review.The currently research trends and existing questions are prospected, and the formation molecular mechanisms and environmental transport behaviors of natural organohalogens are worthwhile studying.
Contents
1 Introduction
2 Natural origin of organohalogens
2.1 Marine source
2.2 Terrestrial source
2.3 Other source
3 Formation mechanism of natural organohalogens
3.1 Biotic mechanism
3.2 Abiotic mechanism
3.3 Influential factors
4 Concentration level of some typical natural organohalogens
5 Fate of transport and transformation in environment
6 General analytical methods
7 Conclusion

中图分类号: 

()
[1] Zhao L, Hou H, Zhou Y, Xue N, Li H, Li F. Chemosphere,2010, 78:1285.
[2] Covaci A, Gheorghe A, Voorspoels S, Maervoet J, Redeker E S, Blust R, Schepens P. Environ. Int., 2005, 31:367.
[3] Kim D G, Choi K I, Lee D H. Atmos. Res., 2011, 101:386.
[4] Fromme H, Becher G, Hilger B, Volkel W. Int. J. Hyg. Environ. Heal., 2016, 219:1.
[5] Dorneles P R, Lailson-Brito J, Secchi E R, Dirtu A C, Weijs L, Dalla Rosa L, Bassoi M, Cunha H A, Azevedo A F, Covaci A. Environ. Res., 2015, 138:49.
[6] Yu L H, Luo X J, Zheng X B, Zeng Y H, Chen D, Wu J P, Mai B X. Chemosphere, 2013, 93:506.
[7] Katsoyiannis A, Samara C. Environ. Res., 2005, 97:245.
[8] Bigot M, Hawker D W, Cropp R, Muir D C, Jensen B, Bossi R, Bengtson Nash S. Environ. Sci. Technol., 2017, DOI:10.1021/acs.est.7b02481
[9] Vuorinen P J, Roots O, Keinanen M. J. Marine Syst., 2017, 171:141.
[10] Airaksinen R, Hallikainen A, Rantakokko P, Ruokojarvi P, Vuorinen P J, Parmanne R, Verta M, Mannio J, Kiviranta H. Chemosphere, 2014, 114:165.
[11] Routti H, Andersen M S, Fuglei E, Polder A, Yoccoz N G. Environ. Pollut., 2016, 216:264.
[12] Colabuono F I, Vander Pol S S, Huncik K M, Taniguchi S, Petry M V, Kucklick J R, Montone R C. Environ. Pollut., 2016, 216:38.
[13] Vetter W, Gall V, Skirnisson K. Sci. Total Environ., 2015, 533:290.
[14] Gribble G.Naturally Occurring Organohalogen Compounds® A Comprehensive Update in Progress in the Chemistry of Organic Natural Products. Ed. by Kinghorn A D, Falk H, Kobayashi J. New York:Springer-Verlag/Vienna, 2010.
[15] Gribble G W. Chemosphere, 2003, 52:289.
[16] Gribble G W. Environ. Chem., 2015, 12:396.
[17] Drechsel E. Zeitschrift fur Biologie, 1896, 33:85.
[18] Wang L S, Zhou X F, Fredimoses M, Liao S R, Liu Y H. RSC Adv., 2014, 4:57350.
[19] Leri A C, Myneni S C. Glob. Biogeochem. Cycle, 2010, 24:1.
[20] Myneni S C B. Science, 2002, 295:1039.
[21] Butler A, Sandy M. Nature, 2009, 460:848.
[22] Wagner C, El Omari M, König G M. J. Nat. Prod., 2009, 72:540.
[23] Gribble G W. Mar. Drugs, 2015, 13:4044.
[24] Gribble G W. Pure. Appl. Chem., 1996, 68:1699.
[25] Gribble G W. Chem. Soc. Rev., 1999, 28:335.
[26] Gribble G J. Environ. Sci. Pollut. Res., 2000, 7:37.
[27] Gribble G W, Blank D H, Jasinski J P. Chem. Commun., 1999, 21:2195.
[28] Gribble G W. J. Nat. Prod., 1992, 55:1353.
[29] Muller G, Nkusi G, Scholer H F. J. Prakt. Chem.-Chem. Ztg., 1996, 338:23.
[30] Vetter W, Haase-Aschoff P, Rosenfelder N, Komarova T, Mueller J F. Environ. Sci. Technol., 2009, 43:6131.
[31] Sim W J, Lee S H, Lee I S, Choi S D, Oh J E. Chemosphere, 2009, 77:552.
[32] 阴永光(Yin Y G), 刘景富(Liu J F), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2011, 23:254.
[33] Flodin C, Whitfield F. Water Sci. Technol., 1999, 40:53.
[34] Wang X, Duggan B M, Moinski T F. J. Am. Chem.Soc., 2015, 137:12343.
[35] Faulkner D J, Stallard M O, Fayos J, Clardy J. J. Am. Chem. Soc., 1973, 95:3413.
[36] Erickson K L, Beutler J A, Gray G N, Cardellina J H, Boyd M R. J. Nat. Prod., 1995, 58:1848.
[37] Scarratt M, Moore R. Mar. Chem., 1996, 54:263.
[38] Wu J, Vetter W, Gribble G W, Schneekloth Jr J S, Blank D H, Görls H. Angewandte Chemie International Edition, 2002, 41:1740.
[39] Nomiyama K, Murata S, Kunisue T, Yamada T K, Mizukawa H, Takahashi S, Tanabe S. Environ. Sci. Technol., 2010, 44:3732.
[40] Marsh G, Athanasiadou M, Bergman A, Asplund L. Environ. Sci. Technol., 2004, 38:10.
[41] Bidleman T F, Agosta K, Andersson A, Haglund P, Liljelind P, Hegmans A, Jantunen L M, Nygren O, Poole J, Ripszam M. Marine Pollution Bulletin, 2016, 112:58.
[42] Winid B. Pol. J. Environ. Stud., 2015, 24:47.
[43] Ueno D, Darling C, Alaee M, Pacepavicius G, Teixeira C, Campbell L, Letcher R J, Bergman A, Marsh G, Muir D. Environ. Sci. Technol., 2008, 42:1657.
[44] Zhang K, Wan Y, Jones P D, Wiseman S, Giesy J P, Hu J Y. Environ. Sci. Technol., 2012, 46:2148.
[45] Teuten E L, Xu L, Reddy C M. Science, 2005, 308:1413.
[46] Malmvärn A, Zebühr Y, Kautsky L, Bergman Å, Asplund L. Chemosphere, 2008, 72:910.
[47] Malmvärn A, Marsh G, Kautsky L, Athanasiadou M, Bergman Å, Asplund L. Environ. Sci. Technol., 2005, 39:2990.
[48] Guerra P, Eljarrat E, Barcelo D. J. Hydrol., 2010, 383:39.
[49] Gorga M, Martinez E, Ginebreda A, Eljarrat E, Barcelo D. Sci. Total Environ., 2013, 444:51.
[50] Moller A, Xie Z Y, Cai M H, Sturm R, Ebinghaus R. Environ. Sci. Technol., 2012, 46:3141.
[51] Baron E, Rudolph I, Chiang G, Barra R, Eljarrat E, Barcelo D. Sci. Total Environ., 2013, 461:258.
[52] Guerra P, Alaee M, Jimenez B, Pacepavicius G, Marvin C, MacInnis G, Eljarrat E, Barcelo D, Champoux L, Fernie K. Environ. Int., 2012, 40:179.
[53] Alonso M B, Azevedo A, Torres J P M, Dorneles P R, Eljarrat E, Barcelo D, Lailson-Brito J, Maim O. Sci. Total Environ., 2014, 481:619.
[54] Siddique S, Xian Q M, Abdelouahab N, Takser L, Phillips S P, Feng Y L, Wang B, Zhu J P. Environ. Int., 2012, 39:50.
[55] Agarwal V, Li J, Rahman I, Borgen M, Aluwihare L I, Biggs J S, Paul V J, Moore B S. Environ. Sci. Technol., 2015, 49:1339.
[56] Agarwal V, El Gamal A A, Yamanaka K, Poth D, Kersten R D, Schorn M, Allen E E, Moore B S. Nature Chemical Biology,2014, 10:640.
[57] Barón E, Hauler C, Gallistl C, Giménez J, Gauffier P, Castillo J, Fernández-Maldonado C, de Stephanis R, Vetter W, Eljarrat E. Environ. Sci. Technol., 2015, 49:9073.
[58] Albers C N, Hansen P E, Jacobsen O S. Sci. Total Environ., 2010, 408:6223.
[59] Dimmer C H, Simmonds P G, Nickless G, Bassford M R. Atmos. Environ., 2001, 35:321.
[60] Haselmann K F, Ketola R A, Laturnus F, Lauritsen F R, Grøn C. Atmos. Environ., 2000, 34:187.
[61] Hoekstra E J, de Leer E W, Udo A T. Chemosphere, 1999, 38:551.
[62] McCulloch A. Chemosphere, 2003, 50:1291.
[63] Peters R J. J. Environ. Monit., 2003, 5:275.
[64] Hellén H, Hakola H, Pystynen K H, Rinne J, Haapanala S. Biogeosciences, 2006, 3:167.
[65] Rhew R C, Teh Y A, Abel T, Atwood A, Mazéas O. Geophys. Res. Lett., 2008, 35:1.
[66] Kotte K, Löw F, Huber S, Krause T, Mulder I, Schöler H. Biogeosciences, 2012, 9:1225.
[67] Rhew R C, Miller B R, Weiss R F. Atmos. Environ., 2008, 42:7135.
[68] Khalil M, Rasmussen R, Wang M X, Ren L. Chemosphere, 1990, 20:207.
[69] Chen A, Park J S, Linderholm L, Rhee A, Petreas M, DeFranco E A, Dietrich K N, Ho S M. Environ. Sci. Technol., 2013, 47:3902.
[70] Wan Y, Choi K, Kim S, Ji K, Chang H, Wiseman S, Jones P D, Khim J S, Park S, Park J. Environ. Sci. Technol., 2010, 44:5233.
[71] Zhang K, Wan Y, Giesy J P, Lam M H, Wiseman S, Jones P D, Hu J. Environ. Sci. Technol., 2010, 44:5781.
[72] Zota A R, Park J S, Wang Y, Petreas M, Zoeller R T, Woodruff T J. Environ. Sci. Technol., 2011, 45:7896.
[73] Cantón R F, Scholten D E, Marsh G, de Jong P C, van den Berg M. Toxicol. Appl. Pharmacol., 2008, 227:68.
[74] Dingemans M M, de Groot A, van Kleef R G, Bergman Å, van den Berg M, Vijverberg H P, Westerink R H. Environ. Health Perspect., 2008, 116:637.
[75] Meerts I, Letcher R J, Hoving S, Marsh G, Bergman A, Lemmen J G, van der Burg B, Brouwer A. Environ. Health Perspect., 2001, 109:399.
[76] Monde K, Satoh H, Nakamura M, Tamura M, Takasugi M. J. Nat. Prod., 1998, 61:913.
[77] Gribble G W. J. Chem. Educ., 2004, 81:1441.
[78] Miles D H, Tunsuwan K, Chittawong V, Hedin P A, Kokpol U, Ni C Z, Clardy J. J. Nat. Prod., 1993, 56:1590.
[79] Wang H, Dai H F, Heering C, Janiak C, Lin W H, Orfali R S, Muller W E G, Liu Z, Proksch P. RSC Adv., 2016, 6:81685.
[80] Aldemir H l, Kohlhepp S V, Gulder T, Gulder T A. Journal of Natural Products, 2014, 77:2331.
[81] Weigold P, Ruecker A, Jochmann M, Barajas X L O, Lege S, Zwiener C, Kappler A, Behrens S. Lett. Appl. Microbiol., 2015, 61:346.
[82] Hoekstra E J, de Weerd H, de Leer E W, Brinkman U A T. Environ. Sci. Technol., 1999, 33:2543.
[83] Rhew R C, Miller B R, Weiss R F. Nature, 2000, 403:292.
[84] Rhew R, Mazeas O. Geophys. Res. Lett., 2010, 37:L18813.
[85] Rhew R C, Whelan M E, Min D H. Biogeosciences, 2014, 11:6427.
[86] Ruecker A, Weigold P, Behrens S, Jochmann M, Barajas X L O, Kappler A. Environ. Chem., 2015, 12:406.
[87] Jordan A, Harnisch J, Borchers R, Le Guern F, Shinohara H. Environ. Sci. Technol., 2000, 34:1122.
[88] Laturnus F, Haselmann K F, Borch T, Grøn C. Biogeochemistry, 2002, 60:121.
[89] 陈德翼(Chen D Y), 彭平安(Peng P A),胡建芳(Hu J F), 任曼(Ren M), 陈佩(Chen P). 环境化学(Environmental Chemistry), 2011, 30:1271.
[90] Xhrouet C,Pirard C, Pauw E. Environ. Sci. Technol., 2001, 35:1616.
[91] Gribble G.Naturally Occuring Organohalogen Compounds-A Comprehensive Survery. In Progress in the Chemistry of Organic Natural Products. NY:Springer, 1996. 1.
[92] Keppler F, Fischer J, Sattler T, Polag D, Jaeger N, Schöler H F, Greule M. Sci. Total Environ., 2017, 605:405.
[93] Blanchet L, Smolinska A, Baranska A, Tigchelaar E, Swertz M, Zhernakova A, Dallinga J W, Wijmenga C, van Schooten F J. J. Breath Res., 2017, 11:1.
[94] Breider F, Albers C N. Chemosphere, 2015, 119:145.
[95] Aeppli C, Bastviken D, Andersson P. Gustafsson O. Environ. Sci. Technol., 2013, 47:6864.
[96] Liu Y N, Thornton D C O, Bianchi T S, Arnold W A, Shields M R, Chen J, Yvon-Lewis S A. Environ. Sci. Technol., 2015, 49:3366.
[97] Weigold P, El-Hadidi M, Ruecker A, Huson D H, Scholten T, Jochmann M, Kappler A, Behrens S. Sci. Rep., 2016, 6:1.
[98] 耿召良(Geng Z L), 王浩鑫(Wang H X), 赵沛基(Zhao P J),郝小江(Hao X J), 曾英(Zeng Y). 云南植物研究(Acta Botanica Yunnanica), 2009, 31:269.
[99] Hager L P, Morris D R, Brown F S, Eberwein H. J. Biol. Chem., 1966, 241:1769.
[100] Manthey J A, Hager L P. J. Biol. Chem., 1985, 260:9654.
[101] Manthey J A, Hager L P. Biochemistry, 1989, 28:3052.
[102] Roach M P, Chen Y P, Woodin S A, Lincoln D E, Lovell C R, Dawson J H. Biochemistry, 1997, 36:2197.
[103] Vilter H. Bot. Marina, 1983, 26:429.
[104] Vilter H. Phytochemistry, 1984, 23:1387.
[105] Wever R, Plat H, de Boer E. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1985, 830:181.
[106] Vaillancourt F H, Yin J, Walsh C T. Proc. Natl. Acad. Sci. U. S. A., 2005, 102:10111.
[107] Chen X, Pée V. Acta Biochim. Biophys. Sin., 2008, 40:183.
[108] Deng H, O'Hagan D. Curr. Opin. Chem. Biol., 2008, 12:582.
[109] Wuosmaa A M, Hager L P. Science, 1990, 249:160.
[110] Dong C, Huang F, Deng H, Schaffrath C, Spencer J B, O'hagan D, Naismith J H. Nature, 2004, 427:561.
[111] Blasiak L C, Drennan C L. Acc. Chem. Res., 2008, 42:147.
[112] 张丽华(Zhang L H). 山西大同大学学报.自然科学版(Shanxi Datong University Journal(Natural Science Edition)), 2014, 30:42.
[113] Morris D R, Hager L P. J. Biol. Chem., 1966, 241:1763.
[114] Taurog A, Howells E M. J. Biol. Chem., 1966, 241:1329.
[115] Hofrichter M, Ullrich R. Appl. Microbiol. Biotechnol., 2006, 71:276.
[116] Zederbauer M, Furtmüller P G, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Nat. Prod. Rep., 2007, 24:571.
[117] Welinder K G. Curr. Opin. Struct. Biol., 1992, 2:388.
[118] Kimura S, Ikeda-Saito M. Proteins:Structure, Function, and Bioinformatics, 1988, 3:113.
[119] Kühnel K, Blankenfeldt W, Terner J, Schlichting I. J. Biol. Chem., 2006, 281:23990.
[120] Libby R D, Beachy T M, Phipps A K. J. Biol. Chem., 1996, 271:21820.
[121] Sundaramoorthy M, Terner J, Poulos T L. Chem. Biol., 1998, 5:461.
[122] Van Pee K H, Unversucht S. Chemosphere, 2003, 52:299.
[123] Wagenknecht H A, Woggon W D. Chem. Biol., 1997, 4:367.
[124] Almeida M, Filipe S, Humanes M, Maia M, Melo R, Severino N, da Silva J, da Silva J F, Wever R. Phytochemistry, 2001, 57:633.
[125] Butler A, Carter-Franklin J N. Nat. Prod. Rep., 2004, 21:180.
[126] Littlechild J, Garcia-Rodriguez E, Dalby A, Isupov M. J. Mol. Recognit., 2002, 15:291.
[127] Winter J M, Moffitt M C, Zazopoulos E, McAlpine J B, Dorrestein P C, Moore B S. J. Biol. Chem., 2007, 282:16362.
[128] Ortiz-Bermudez P, Hirth K C, Srebotnik E, Hammel K E. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:3895.
[129] Chen X P, Huang M F, Wang B. Chin. J. Chem., 2008, 26:1486.
[130] Messerschmidt A, Prade L, Wever R. Biol. Chem., 1997, 378:309.
[131] Neumann C S, Fujimori D G, Walsh C T. Chem. Biol., 2008, 15:99.
[132] Wever R, van der Horst MA. Dalton Trans., 2013, 42:11778.
[133] Leblanc C, Vilter H, Fournier J B, Delage L, Potin P, Rebuffet E, Michel G, Solari P, Feiters M, Czjzek M. Coordination Chemistry Reviews, 2015, 301:134.
[134] Fournier J B, Rebuffet E, Delage L, Grijol R, Meslet-Cladière L, Rzonca J, Potin P, Michel G, Czjzek M, Leblanc C. Applied and Environmental Microbiology, 2014, 80:7561.
[135] Dairi T, Nakano T, Aisaka K, Katsumata R, Hasegawa M. Bioscience, Biotechnology, and Biochemistry, 1995, 59:1099.
[136] Hammer P E, Hill D S, Lam S T, Van Pée K H, Ligon J M. Appl. Environ. Microbiol., 1997, 63:2147.
[137] Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pée K H. Angewandte Chemie International Edition, 2000, 39:2300.
[138] Sánchez C, Butovich I A, Braña A F, Rohr J, Méndez C, Salas J A. Chem. Biol., 2002, 9:519.
[139] Zehner S, Kotzsch A, Bister B, Süssmuth R D, Méndez C, Salas J A, van Pée K H. Chem. Biol., 2005, 12:445.
[140] Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei A J, Dong C, Naismith JH, Van Pée K H. Biocatal. Biotransform., 2006, 24:401.
[141] Dong C, Flecks S, Unversucht S, Haupt C, van Pee K H, Naismith J H. Science, 2005, 309:2216.
[142] Yeh E, Garneau S, Walsh C T. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:3960.
[143] Unversucht S, Hollmann F, Schmid A, van Pée K H. Adv. Synth. Catal., 2005, 347:1163.
[144] Van Pée K H, Patallo E P. Appl. Microbiol. Biotechnol., 2006, 70:631.
[145] Yeh E, Cole L J, Barr E W, Bollinger J M, Ballou D P, Walsh C T. Biochemistry, 2006, 45:7904.
[146] Vaillancourt F H, Yeh E, Vosburg D A, O'connor S E, Walsh C T. Nature, 2005, 436:1191.
[147] Galoni D? D P, Barr E W, Walsh C T, Bollinger J M, Krebs C. Nat. Chem. Biol., 2007, 3:113.
[148] Vaillancourt F H, Yeh E, Vosburg D A, Garneau-Tsodikova S, Walsh C T. Chem. Rev., 2006, 106:3364.
[149] Keppler F, Eiden R, Niedan V, Pracht J, Schöler H. Nature, 2000, 403:298.
[150] Bastviken D, Svensson T, Karlsson S, Sanden P, Oberg G. Environ. Sci. Technol., 2009, 43:3569.
[151] Comba P, Kerscher M, Krause T, Scholer H F. Environ. Chem., 2015, 12:381.
[152] Leri A C, Ravel B. Environ. Sci. Technol., 2015, 49:13350.
[153] Harper D B. Nat. Prod. Rep., 2000, 17:337.
[154] Hamilton J T, McRoberts W C, Keppler F, Kalin R M, Harper D B. Science, 2003, 301:206.
[155] Montzka S, Fraser P, Butler J, Cunnold D, Daniel J, Derwent R, Lal S, McCulloch A, Oram D, Reeves C. Controlled Substances and Other Source Gases, Chapter 1 of the Scientific Assessment of Ozone Depletion:2002. Scientific Assessment of Ozone Depletion:2002, 2003.
[156] Okey A B, Riddick D S, Harper P A. Toxicol. Lett., 1994, 70:1.
[157] Gu C, Liu C, Ding Y, Li H, Teppen B J, Johnston C T, Boyd S A. Environ. Sci. Technol., 2011, 45:3445.
[158] Freeman P K, Srinivasa R. J. Agric. Food Chem., 1983, 31:775.
[159] Huwe J K, Feil V J, Zaylskie R G, Tiernan T O. Chemosphere, 2000, 40:957.
[160] Czaplicka M. Sci. Total Environ., 2004, 322:21.
[161] Leuenberger C, Ligocki M P, Pankow J F. Environ. Sci. Technol., 1985, 19:1053.
[162] Lin K, Yan C, Gan J. Environ. Sci. Technol., 2013, 48:263.
[163] Méndez-Díaz J D, Shimabuku K K, Ma J, Enumah Z O, Pignatello J J, Mitch W A, Dodd M C. Environ. Sci. Technol., 2014, 48:7418.
[164] Kumar A, Borgen M, Aluwihare L I, Fenical W. Environ. Sci. Technol., 2017, 51:589.
[165] Gustavsson M, Karlsson S, Öberg G, Sandén P, Svensson T, Valinia S, Thiry Y, Bastviken D. Environ. Sci. Technol., 2012, 46:1504.
[166] Johansson E, Sandén P, Öberg G. Soil Sci., 2003, 168:347.
[167] Redon P O, Jolivet C, Saby N P, Abdelouas A, Thiry Y. Biogeochemistry, 2013, 114:413.
[168] Öberg G, Börjesson I, Samuelsson B. Water, Air, & Soil Pollution, 1996, 89:351.
[169] Baker J I, Hites R A. Environ. Sci. Technol., 2000, 34:2879.
[170] Redon P O, Abdelouas A, Bastviken D, Cecchini S, Nicolas M, Thiry Y. Environ. Sci. Technol., 2011, 45:7202.
[171] Haraguchi K, Kato Y, Ohta C, Koga N, Endo T. J. Agric. Food Chem., 2011, 59:13102.
[172] Ruecker A, Weigold P, Behrens S, Jochmann M, Laaks J, Kappler A. Environ. Sci. Technol., 2014, 48:9170.
[173] van Boxtel A L, Kamstra J H, Cenijn P H, Pieterse B, Wagner M J, Antink M, Krab K, van der Burg B, Marsh G, Brouwer A, Legler J. Environ. Sci. Technol., 2008, 42:1773.
[174] Nomiyama K, Kanbara C, Ochiai M, Eguchi A, Mizukawa H, Isobe T, Matsuishi T, Yamada T K, Tanabe S. Mar. Environ. Res., 2014, 93:15.
[175] Gribble G W. Acc. Chem. Res., 1998, 31:141.
[176] Ashby J. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 356:297.
[177] Dahlgren E, Lindqvist D, Dahlgren H, Asplund L, Lehtila K. Chemosphere, 2016, 144:1597.
[178] Hossaini R, Chipperfield M P, Montzka S A, Rap A, Dhomse S, Feng W. Nat. Geosci., 2015, 8:186.
[179] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 化学进展(Progress in Chemistry), 2012, 24:2040.
[180] Keppler F, Biester H. Chemosphere, 2003, 52:451.
[181] Colmenero-Flores J M, Martínez G, Gamba G, Vázquez N, Iglesias D J, Brumós J, Talón M. The Plant Journal, 2007, 50:278.
[182] Kawakami K, Umena Y, Kamiya N, Shen J R. Proc. Natl. Acad. Sci.U.S.A, 2009, 106:8567.
[183] MacRobbie E. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 1982, 299:469.
[184] Popelková H, Yocum C F. Photosynth. Res., 2007, 93:111.
[185] Raschke K, Fellows M P. Planta, 1971, 101:296.
[186] Albers C N, Jacobsen O S, Flores E M M, Johnsen A R. Environ. Sci. Technol., 2017, 51:6131.
[187] Johnsen A R, Jacobsen O S, Gudmundsson L, Albers C N. Biogeochemistry, 2016, 130:53.
[188] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 环境科学学报(Journal of Environmental Science), 2011, 31:1569.
[189] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 科学通报(Chinese Science Bulletin), 2013, 58:2626.
[190] Bastviken D, Thomsen F, Svensson T, Karlsson S, Sandén P, Shaw G, Matucha M, Öberg G. Geochim. Cosmochim. Acta, 2007, 71:3182.
[191] Bracken A, Pocker A, Raistrick H. Biochem. J., 1954, 57:587.
[192] Hunkeler D, Laier T, Breider F, Jacobsen O S. Environ. Sci. Technol., 2012, 46:6096.
[193] Breider F, Hunkeler D. Geochimica Et Cosmochimica Acta,2014, 125:85.
[194] Breider F, Hunkeler D. Environ. Sci. Technol., 2014, 48:1592.
[195] Holt B D, Sturchio N C, Abrajano T A, Heraty L J. Anal. Chem., 1997, 69:2727.
[196] Hunkeler D, Aravena R. Environ. Sci. Technol., 2000, 34:2839.
[197] Jendrzejewski N, Eggenkamp H, Coleman M. Appl. Geochem., 2001, 16:1021.
[198] Dufour P, Pirard C, Charlier C. J. Chromatogr. B, 2016, 1036:66.
[199] Hauler C, Vetter W. Rapid Commun. Mass Spectrom., 2015, 29:619.
[200] Wang T, Rabe P, Citron C A, Dickschat J S. Beilstein J. Org. Chem., 2013, 9:2767.
[201] Leri A C, Hay M B, Lanzirotti A, Rao W, Myneni S C. Anal. Chem., 2006, 78:5711.
[202] Leri A C, Ravel B. Journal of Synchrotron Radiation, 2014, 21:623.
[1] 高艳蓬, 李桂英, 马盛韬, 安太成*. 合成麝香的研究新进展与当前挑战:从人体护理、环境污染到人体健康[J]. 化学进展, 2017, 29(9): 1082-1092.
[2] 韩林, 陈宝梁*. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9): 1008-1020.
[3] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.
[4] 方齐乐, 陈宝梁*. 环境中高氯酸盐的自然来源、形成机制及其归趋行为[J]. 化学进展, 2012, (10): 2040-2053.
[5] 刘稷燕,江桂斌. 食品中的丙烯酰胺及其形成机制*[J]. 化学进展, 2004, 16(06): 1000-.
[6] 毕新慧,徐晓白. 多氯联苯的环境行为*[J]. 化学进展, 2000, 12(02): 152-.