English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 180-190 DOI: 10.7536/PC180431 前一篇   后一篇

• 综述 •

大气半/中等挥发性有机物的组成及其对有机气溶胶贡献

唐荣志1, 王辉1, 刘莹1, 郭松1,2,**()   

  1. 1. 环境模拟与污染控制国家联合重点实验室 北京大学环境科学与工程学院 北京 100871
    2. 江苏省大气环境与装备技术协同创新中心 江苏省大气环境监测与污染控制重点实验室 南京信息工程大学 南京 210044
  • 收稿日期:2018-04-17 修回日期:2018-06-30 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 郭松
  • 基金资助:
    国家重点研发计划(2016YFC0202000); 国家重点研发计划(2017YFC0213000); 国家自然科学基金项目资助(21677002)

Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol

Rongzhi Tang1, Hui Wang1, Ying Liu1, Song Guo1,2,**()   

  1. 1. State Key Joint Laboratory of Environmental Simulation and Pollution Control,College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
    2. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China;
  • Received:2018-04-17 Revised:2018-06-30 Online:2019-01-15 Published:2018-12-07
  • Contact: Song Guo
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the the National Key R&D Program of China(2016YFC0202000); The work was supported by the the National Key R&D Program of China(2017YFC0213000); The National Natural Science Foundation of China(21677002)

本文综述了大气半/中等挥发性有机物S/IVOCs的测量技术、来源、大气行为及对有机气溶胶生成的贡献。S/IVOCs测量技术的进步主要依托于质谱技术的发展,分为离线和在线测量质谱测量技术。离线测量物种鉴别能力好,但预处理复杂、时间分辨率低;在线测量技术可以获得高时间分辨率的组分及气粒分配信息,对揭示化学反应机理具有重要作用。S/IVOCs的来源包括一次和二次源。目前对一次源排放的研究主要针对机动车和生物质燃烧。研究结果表明,汽油车、柴油车和生物质燃烧排放S/IVOCs分别为POA的2.9~8.5倍、4.5~20.4倍和0.83~5.57倍。汽油车排放的S/IVOCs氧化可贡献总SOA的34%~76%,柴油车则高达90%,生物质燃烧占80%。基于外场观测数据的模型模拟表明S/IVOCs对实际大气中SOA的贡献可达40%~85%,是不可或缺的SOA前体物。未来研究中,开发新的测量技术、定量分析源排放和环境大气中S/IVOCs浓度及其对SOA贡献是研究的关键,将外场观测、实验室模拟与模型模拟相结合,能够为S/IVOCs生成SOA机制探讨提供思路。

This review summarizes the recent advances of semi-volatile/intermediate volatility organic compounds studies, including the measurement techniques, S/IVOCs sources, atmospheric behavior and their contributions to organic aerosol formation. The rapid development of mass spectrometry facilitates the S/IVOCs measurements which include on-line and off-line mass spectrometry. The S/IVOCs off-line measurements provide more information about species at molecular level. However, the offline techniques bear the drawbacks of complex pretreatment and low time resolution, which leads to large uncertainties and the limitation to study the atmospheric chemistry processes. The on-line techniques measure the high time resolution molecular composition and gas-to-particle partitioning, and provide more useful information to elucidate the chemical mechanism of the ambient atmosphere. S/IVOCs could be directly emitted into the atmosphere, or formed by the oxidation of volatile organic compounds (VOCs). The major primary S/IVOCs sources are vehicular emission and biomass burning. Previous studies showed that ratios of S/IVOCs to POA are 2.9~8.5 for gasoline engines, 4.5~20.4 for diesel engines, and 0.83~5.57 for biomass burning. The S/IVOCs oxidation could contribute to 34%~76%, 90%, and 80% of the total SOA from the oxidation of gasoline vehicle exhaust, diesel vehicle exhaust, and biomass burning gases, respectively. Model simulation based on field observations showed that the SOA from the S/IVOCs oxidation could account for 40%~85% of the ambient SOA, suggesting that S/IVOCs are unneglectable SOA precursors. In future studies, new techniques are required to be developed to quantify more S/IVOCs species. Concentrations and speciation of S/IVOCs from different sources as well as ambient atmosphere need to be quantified. The combination of field campaign, lab study and model simulation can provide more insights of mechanism of S/IVOCs oxidation to improve our understanding of SOA formation.

()
图1 S/IVOCs在线测量技术,以BEACHON-RoMBAS测量为例,展示了观测期间平均碳氧化态与挥发性,并提供了非甲烷有机碳浓度信息,圆圈颜色代表相应的测量仪器信息,圆圈大小与总碳的质量成正比[32]
Fig.1 Online measurement techniques of S/IVOCs, example based on results of BEACHON-RoMBAS campaign, showing carbon oxidation state (OSc) versus volatility (c* at 298 K, μg/m3), circle area is proportional to total carbon mass, coloured by analytical technique used[32]. Copyright ? 2017, Springer Nature
表1 S/IVOCs的测量技术及优缺点
Table 1 Analytical Methods of S/IVOCs and Their Advantages and Disadvantages
表2 S/IVOCs对SOA生成的贡献
Table 2 Contributions of S/IVOCs to SOA
[1]
Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J . Atmos. Chem. Phys., 2005,5:1053.
[2]
Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molina M J, Zhang R Y . P. Natl. Acad. Sci. U. S. A., 2014,111:17373.
[3]
Hallquist M, Wenger J C, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N M, George C, Goldstein A H, Hamilton J F, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin M E, Jimenez J L, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel T F, Monod A, Prevot A S H, Seinfeld J H, Surratt J D, Szmigielski R, Wildt J . Atmos. Chem. Phys., 2009,9:5155.
[4]
Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S H, Zhang Q, Kroll J H, DeCarlo P F, Allan J D, Coe H, Ng N L, Aiken A C, Docherty K S, Ulbrich I M, Grieshop A P, Robinson, A L, Duplissy J, Smith J D, Wilson K R, Lanz V A; Hueglin C, Sun Y L, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J M, Collins D R, Cubison M J, Dunlea E J . Science, 2009,326:1525.
[5]
Ayres B R, Allen H M, Draper D C, Brown S S, Wild R J, Jimenez J L, Day D A, Campuzano-Jost P, Hu W, DeGouw J, Koss A, Cohen R C, Duffey K C, Romer P, Baumann K, Edgerton E, Takahama S, Thornton J A, Lee B H, Lopez-Hilfiker F D, Mohr C, Wennberg P O, Nguyen T B, Teng A, Goldstein A H, Olson K, Fry J L . Atmos. Chem. Phys., 2015,15:13377.
[6]
Guo S, Hu M, Guo Q F, Zhang X, Zheng M, Zheng J, Chang C C, Schauer J J, Zhang R Y . Environ. Sci. Technol., 2012,46:9846.
[7]
Guo S, Hu M, Wang Z B, Slanina J, Zhao Y L . Atmos. Chem. Phys., 2010,10:947.
[8]
Kroll J H, Seinfeld J H . Atmos. Environ., 2008,42:3593.
[9]
郭松 (Guo S), 胡敏 (Hu M), 尚冬杰 (Shang D J), 郭庆丰 (Guo Q F), 胡伟伟 (Hu W W) . 化学学报( Acta Chimca Sinica), 2014,72:145
[10]
郭松 ( Guo S), 胡敏 (Hu M), 郭庆丰 (Guo Q F), 尚冬杰 (Shang D J) . 化学学报( Acta Chimca Sinica), 2014,72:658.
[11]
Ma P K, Zhao Y L, Robinson A L, Worton D R, Goldstein A H, Ortega A M, Jimenez J L, Zotter P, Prévôt A S H, Szidat S . Atmos. Chem. Phys., 2017,17:9237.
[12]
Volkamer R, Jimenez J L, San M F, Dzepina K, Zhang Q, Salcedo D, Molina L T, Worsnop D R, Molina M J . Geophys. Res. Let., 2006,33:L17811.
[13]
Heald C L, Coe H, Jimenez J L, Weber R J, Bahreini R, Middlebrook A M, Russell L M, Jolleys M, Fu T MA, Allan J D, Bower K N, Capes G, Crosier J, Morgan W T, Robinson N H, Williams P I, Cubison M J, DeCarlo P F, Dunlea E J . Atmos. Chem. Phys., 2011,11:12673.
[14]
Ehn M, Thornton J A, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurten T, Nielsen L B, Jorgensen S, Kjaergaard H G, Canagaratna M, Dal M M, Berndt T, Petaja T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F . Nature, 2014,506:476.
[15]
Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kurten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petaja T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipila M, Spracklen D V, Stozhkov Y, Stratmann F, Tome A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U . Science, 2014,344:717.
[16]
Bianchi F, Tröstl J, Junninen H, Frege C, Henne S, Hoyle C R, Molteni U, Herrmann E, Adamov A, Bukowiecki N . Science, 2016,352:1109.
[17]
Trostl J, Chuang W K, Gordon H, Heinritzi M, Yan C, Molteni U, Ahlm L, Frege C, Bianchi F, Wagner R, Simon M, Lehtipalo K, Williamson C, Craven J S, Duplissy J, Adamov A, Almeida J, Bernhammer A K, Breitenlechner M, Brilke S, Dias A, Ehrhart S, Flagan R C, Franchin A, Fuchs C, Guida R, Gysel M, Hansel A, Hoyle C R, Jokinen T, Junninen H, Kangasluoma J, Keskinen H, Kim J, Krapf M, Kurten A, Laaksonen A, Lawler M, Leiminger M, Mathot S, Mohler O, Nieminen T, Onnela A, Petaja T, Piel F M, Miettinen P, Rissanen M P, Rondo L, Sarnela N, Schobesberger S, Sengupta K, Sipila M, Smith J N, Steiner G, Tome A, Virtanen A, Wagner A C, Weingartner E, Wimmer D, Winkler P M, Ye P L, Carslaw K S, Curtius J, Dommen J, Kirkby J, Kulmala M, Riipinen I, Worsnop D R. Donahue N M, Baltensperger U . Nature, 2016,533:527.
[18]
Kalberer M, Paulsen D, Sax M, Steinbacher M, Dommen J, Prevot A S H, Fisseha R, Weingartner E, Frankevich V, Zenobi R . Science, 2004,303:1659.
[19]
Barsanti K C, Pankow J F . Atmos. Environ., 2005,39:6597.
[20]
Song C, Zaveri R A, Alexander M L, Thornton J A, Madronich S, Ortega J V, Zelenyuk A, Yu X Y, Laskin A, Maughan D A . Geophys. Res. Let., 2007,34:20.
[21]
Ervens B, Carlton A G, Turpin B J, Altieri K E, Kreidenweis S M, Feingold G . Geophys. Res. Let., 2008,35:2.
[22]
Ng N L, Kroll J H, Chan A W H, Chhabra P S, Flagan R C, Seinfeld J H . Atmos. Chem. Phys., 2007,7:3909.
[23]
Robinson A L, Donahue N M, Shrivastava M K, Weitkamp E A, Sage A M, Grieshop A P, Lane T E, Pierce J R, Pandis S N . Science, 2007,315:1259.
[24]
Donahue N M, Robinson A L, Stanier C O, Pandis S N . Environ. Sci. Technol., 2006,40:2635.
[25]
Dzepina K, Volkamer R M, Madronich S, Tulet P, Ulbrich I M, Zhang Q, Cappa C D, Ziemann P J, Jimnez J L . Atmos. Chem. Phys., 2009,9:5681.
[26]
Spracklen D V, Jimnez J L, Carslaw K S, Worsnop D R, Evans M J, Zhang Q, Canagaratna M R, Allan J, Coe H, McFiggans G, Rap A, Forster P . Atmos. Chem. Phys., 2011,11:12109.
[27]
Bergström R, Denier van der Gon H A C, Prévôt A S H, Yttri K E, Simpson D . Atmos. Chem. Phys., 2012,12:8499.
[28]
Hayes P L, Carlton A G, Baker K R, Ahmadov R, Washenfelder R A, Alvarez S, Rappenglück B, Gilman J B, Kuster W C, de Gouw J A, Zotter P, Prévôt A S H, Szidat S, Kleindienst T E, Offenberg J H, Ma P K, Jimnez J L . Atmos. Chem. Phys., 2015,15:5773.
[29]
Woody M C, West J J, Jather S H, Robinson A L, Arunachalam S . Atmos. Chem. Phys., 2015,15:6929.
[30]
Bruns E A, Haddad I E, Slowik J G, Kilic D, Klein F, Baltensperger U, Prévôt A S H . Sci. Rep., 2016,6:27881.
[31]
Jathar S H, Woody M, Pye H O T, Baker K R, Robinson A L . Atmos. Chem. Phys., 2017,17:4305.
[32]
Hunter J F, Day D A, Palm B B, Yatavelli R L N, Chan A W H, Kaser L, Cappellin L, Hayes P L, Cross E S, Carrasquillo A J . Emergence, 2017,8:21.
[33]
Król S, Zabiegała B, Namiesnik J . Anal. Bioanal. Chem., 2011,400:751.
[34]
Cheng Y, He K B, Duan F K, Zheng M, Ma Y L, Tan J H . Environ Int., 2009,35:674.
[35]
Cui Y, Wang J, Li D H . Anal. Chim. Acta., 2013,799:8.
[36]
Melymuk L, Bohlin P, Sanka O, Pozo K, Klanova J . Environ. Sci. Technol., 2014,48:14077.
[37]
Cross E S, Hunter J F, Carrasquillo A J, Franklin J P, Herndon S C, Jayne J T, Worsnop D R, Miake-Lye R C, Kroll J H . Atmos. Chem. Phys., 2013,13:7845.
[38]
Canagaratna M R, Jayne J T, Jimenez J L, Allan J D, Alfarra M R, Zhang Q, Onasch T B, Drewnick F, Coe H, Middlebrook A . Mass. Spectrom. Rev., 2007,26:185.
[39]
Huffman J A, Ziemann P J, Jaynek J T, Worsnop D R, Jimenez J L . Aerosol. Sci. Tech., 2008,42:395.
[40]
Holzinger R, Williams J, Herrmann F, Lelieveld J, Donahue N M, Röckmann T . Atmos. Chem. Phys., 2010,10:2257.
[41]
Eichler P, Müller M, D’Anna B, Wisthaler A . Atmos. Meas. Tech., 2015,8:1353.
[42]
Yatavelli R L N, Thornton J A . Aerosol. Sci. Tech., 2010,44:61.
[43]
Lopez-Hilfiker F D, Mohr C, Ehn M, Rubach F, Kleist E, Wildt J, Mentel T F, Lutz A, Hallquist M, Worsnop D, Thornton J A . Atmos. Meas. Tech., 2014,7:983.
[44]
Zhao Y L, Kreisberg N M, Worton D R, Teng A P, Hering S V, Goldstein A H . Aerosol. Sci. Technol., 2013,47:258.
[45]
Williams B J, Goldstein A H, Kreisberg N M, Hering S V . P.Natl. Acad. Sci. USA., 2009,107:15.
[46]
Pye H O T, Seinfeld J H . Atmos. Chem. Phys., 2010,10:4377.
[47]
Shrivastava M, Easter R C, Liu X H, Zelenyuk A, Singh B, Zhang K, Ma P L, Chand D, Ghan S, Jimenez J L . J. Geophys. Res., 2015,120:4169.
[48]
Hodzic A, Kasibhatla P S Jo D S, Cappa C D, Jimenez J L. Madronich S.; Park R . J. Atmos. Chem. Phys 2016,16, 7917.
[49]
Gordon T. D.; Presto A. A.; Nguyen N. T.; Robertson W. H, Na K, Sahay K N, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M Robinson A L . Atmos. Chem. Phys., 2014,14:4643.
[50]
May A A, Nguyen N T, Presto A A, Gordon T D, Lipsky E M, Karve M, Gutierrez A, Robertson W H, Zhang M, Brandow C, Chang O, Chen S Y, Cicero-Fernandez P, Dinkins L, Fuentes M, Huang S M, Ling R, Long J, Maddox C, Massetti J, McCauley E, Miguel A, Na K, Ong R, Pang Y B, Rieger P, Sax T, Truong T, Vo T, Chattopadhyay S, Maldonado H, Maricq M M Robinson A L . Atmos. Environ., 2014,88:247.
[51]
Gentner D R, Worton D R, Isaacman G, Davis L C, Dallmann T R, Wood E C, Herndon S C, Goldstein A H, Harley R A . Environ. Sci. Technol., 2013,47:11837.
[52]
Zhao Y L, Hennigan C J, May A A, Tkacik D S. De Gouw J A, Gilman J B, Kuster W C, Borbon A, Robinson A L, . Environ. Sci. Technol., 2014,48:13743.
[53]
Zhao Y L, Nguyen N T, Presto A A, Hennigan Christopher J, May A A, Robinson A L, . Enviro. Sci.Technol, 2015,49:11516.
[54]
Zhao Y L, Nguyen N T, Presto A A, Hennigan Christopher J, May A A, Robinson A L . Environ. Sci. Technol., 2016,50:4554.
[55]
Zhao Y L, Saleh R, Saliba G, Presto A A, Gordon T D, Drozd G T, Goldstein A H, Donahue N M, Robinson A L . Proc. Natl. Acad. Sci. USA., 2017,114:6984.
[56]
Schauer J J, Kleeman M J, Cass G R, Simoneit B R T . Environ. Sci. Technol., 2002,36:1169.
[57]
Zhao B, Wang S X, Donahue N M, Jathar S H, Huang X F, Wu W J, Hao J M, Robinson A L . Sci Rep., 2016,6.
[58]
Gaines L, Vyas A, Anderson J . Transportation Research Record: Journal of the Transportation Research Board, 2006,1983:91.
[59]
Bond T C, Streets D G, Yarber K F, Nelson S M, Woo J H, Klimont Z J . Geophys. Res., 2004,109.
[60]
Stockwell C E, Veres P R, Williams J, Yokelson R J . Atmos. Chem. Phys., 2015,15:845.
[61]
Yokelson R J, Burling I R, Gilman J B, Warneke C, Stockwell C E, De Gouw J, Akagi S K, Urbanski S P, Veres P, Roberts J M, Kuster W C, Reardon J, Griffith D W T, Johnson T J, Hosseini S, Miller J W, Cocker D R, Jung H, Weise D R . Atmos. Chem. Phys., 2013,13:89.
[62]
Hatch L E, Yokelson R J, Stockwell C E, Veres P R, Simpson I J, Blake D R, Orlando J J, Barsanti K C . Atmos. Chem. Phys., 2017,17:1471.
[63]
Pankow James F . Atmos. Environ., 1994,28:185.
[64]
Grieshop A P, Logue J M, Donahue N M, Robinson A L . Atmos. Chem. Phys., 2009,9:1263.
[65]
Shrivastava M K, Lane T E, Donahue N M, Pandis S N, Robinson A L . J. Geophys. Res., 2008,113.
[66]
Hodzic A, Jimenez J L, Madronich S, Canagaratna M R, DeCarlo P, Kleinman L, Fast J . Atmos. Chem. Phys., 2010,10:5491.
[67]
Kim S, Wolfe G M, Mauldin L, Cantrell C, Guenther A, Karl T, Turnipseed A, Greenberg J, Hall S R, Ullmann K . Atmos. Chem. Phys., 2013,13:2031.
[68]
Nakashima Y, Kato S, Greenberg J, Harley P, Karl T, Turnipseed A, Apel E, Guenther A, Mith J, Kajii Y . Atmos.Environ, 2014,85:1.
[69]
Jathar S H, Gordon T D, Hennigan C J, Pye H O T, Pouliot G, Adams P J, Donahue N M, Robinson A L . Proc. Natl. Acad. Sci. USA., 2014,111:10473.
[70]
Gentner D R, Jathar S H, Gordon T D, Bahreini R, Day D A, El Haddad I, Hayes P L, Pieber S M, Platt S M, De Gouw J, Goldstein A H, Harley R A, Jimenez J L, Prevot A S H, Robinson A L . Environ. Sci. Technol., 2017,51:1074.
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[3] 王海潮, 陈军, 陆克定. 对流层大气NO3与N2O5的实地测量[J]. 化学进展, 2015, 27(7): 963-976.
[4] 李晓倩, 陆克定, 魏永杰, 唐孝炎. 对流层大气过氧自由基实地测量的技术进展及其在化学机理研究中的应用[J]. 化学进展, 2014, 26(04): 682-694.
[5] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[6] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.
[7] 谢绍东 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制*[J]. 化学进展, 2010, 22(04): 727-733.
[8] 陆克定 张远航. HOx自由基的实地测量及其化学机制解析*[J]. 化学进展, 2010, 22(0203): 500-514.
[9] 王振亚,郝立庆,张为俊. 二次有机气溶胶的气体/粒子分配理论*[J]. 化学进展, 2007, 19(01): 93-100.
[10] 贾龙,葛茂发,庄国顺,姚立,王殿勋. 对流层夜间化学研究*[J]. 化学进展, 2006, 18(0708): 1034-1040.
[11] 王振亚,郝立庆,张为俊. 二次有机气溶胶形成的化学过程*[J]. 化学进展, 2005, 17(04): 732-739.