English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 458-466 DOI: 10.7536/PC130827 前一篇   后一篇

• 综述与评论 •

二次有机气溶胶的水相形成研究

祁骞, 周学华*, 王文兴   

  1. 山东大学环境研究院 济南 250100
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 周学华,e-mail:xuehuazhou@sdu.edu.cn E-mail:xuehuazhou@sdu.edu.cn
  • 基金资助:

    山东省自然科学基金项目(No.ZR2010DQ022)和山东大学自主创新基金项目(No.2012TS041)资助

Studies on Formation of Aqueous Secondary Organic Aerosols

Qi Qian, Zhou Xuehua*, Wang Wenxing   

  1. Environment Research Institute, Shandong University, Jinan 250100, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the Shandong Provincial Natural Science Foundation (No.ZR2010DQ022) and the Independent Innovation Foundation of Shandong University (No.2012TS041)

二次有机气溶胶是大气颗粒物中的主要成分,对大气环境、气候以及人类健康等有重要影响。近年来的研究表明,水相形成二次有机气溶胶与传统气相形成二次有机气溶胶对二次有机气溶胶的贡献相当,且能够解释用传统气相形成方法无法解释的野外观测与模型模拟以及野外观测与室内烟雾箱模拟二次有机气溶胶在颗粒大小、分布、浓度以及老化程度等方面的差异,因而成为研究的热点。本综述重点介绍了目前大气中二次有机气溶胶水相形成的实验室研究,包括黑暗条件下的非自由基反应(水合、缩醛/半缩醛、醇醛缩合和催化反应)和光照条件下的自由基反应。同时,对二次有机气溶胶水相形成研究的发展方向进行了展望。

Secondary organic aerosol (SOA) is the major species in the atmospheric particles and has an important impact on the atmospheric environment, climate and human health. In recent years, the formation of aqueous SOA has been becoming a research hotspot. This is due to its comparable contribution to SOA budget to that from the traditional reaction of gas phase, and the important roles in explaining the discrepancies between field observation and model results, field observation and chamber simulation results in the laboratory on size, distribution, concentration and aging degree of SOA, which cannt be understood by the traditional SOA formation through gas phase. In this article, we introduce current major ways to form aqueous SOA in laboratory studies, including non-radical reactions in the dark (related to hydration, acetal/hemiacetal, aldol condensation and catalytic reactions) and radical reactions under the light. Meanwhile, the prospects for the study direction of the formation of aqueous SOA are given.

Contents
1 Introduction
2 The major physical and chemical processes of the formation of aqueous SOA
3 Formation of aqueous SOA
3.1 Reactions under the dark
3.2 Photochemical reactions
4 Conclusions

中图分类号: 

()

[1] Seinfeld J H, Pankow J F. Ann. Rev. Phys. Chem., 2003, 54: 121.
[2] 王振亚(Wang Z Y), 郝立庆(Hao L Q), 张为俊(Zhang W J). 化学进展(Progress in Chemistry), 2005, 17 (4 ): 732.
[3] Zhang Q, Jimenez J L, Canagaratna M R, Allan J D, Coe H, Ulbrich I, Alfarra M R, Takami A, Middlebrook A M, Sun Y L, Dzepina K, Dunlea E, Docherty K, De Carlo P F, Salcedo D, Onasch T, Jayne J T, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Grifn R J, Rautiainen J, Worsnop D R. Geophys. Res. Lett., 2007, 34: L13801.
[4] 兰辉(Lan H). 南京信息工程大学硕士论文(Master Dissertation of Nanjing University of Information Science & Technology), 2011.
[5] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics from Air Pollution to Climate Change. NY: John Wiley & Sons, Inc., 1998. 1170.
[6] Odum J R, Hoffmann T, Bowman F, Collins D, Flangan R C, Seinfeld J H. Environ. Sci. Technol., 1996, 30: 2580.
[7] 郝立庆 (Hao L Q). 中国科学院合肥物质科学研究院博士论文(Doctoral Dissertation of Hefei Institutes of Physical Science, Chinese Academy of Sciences), 2007.
[8] 谢绍东(Xie S D), 于淼(Yu M), 姜明(Jiang M). 环境科学学报(Acta Scientiae Circumsantiae), 2006, 26 (12): 1933.
[9] Donahue N M, Robinson A L, Stanier C O, Pandis S N. Environ. Sci. Technol., 2006, 40: 2635.
[10] Tsigaridis K, Kanakidou M. Atmos. Chem. Phys., 2006, 3: 1849.
[11] Aiken A C, De Carlo P F, Kroll J H, Worsnop D R, Huffman J A, Docherty K, Ulbrich I M, Mohr C, Kimmel J R, Sueper D, Zhang Q, Sun Y, Trimborn A, Northway M, Ziemann P J, Canagaratna M R, Onasch T B, Alfarra R, Prevot A S H, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez J L. Environ. Sci. Technol., 2008, 42: 4478.
[12] Hennigan C J, Bergin M H, Dibb J E, Weber R J. Geophys. Res. Lett., 2008, 35: L18801.
[13] Hennigan C J, Bergin M H, Russell A G, Nenes A, Weber R J. Atmos. Chem. Phys., 2009, 9: 3613.
[14] De Gouw J A, Brock C A, Atlas E L, Bates T S, Fehsenfeld F C, Goldan P D, Holloway J S, Kuster W C, Lerner B M, Matthew B M, Middlebrook A M, Onasch T B, Peltier R E, Quinn P K, Senff C J, Stohl A, Sullivan A P, Trainer M, Warneke C, Weber R J, Williams E J. J. Geophys. Res., 2008, 113: D08301.
[15] Weber R, Sullivan A P, Peltier R E, Russell A, Yan B, Zheng M, de Gouw J, Warnecke C, Brock C, Holloway J S, Atlas E L, Edgerton E. J. Geophys. Res., 2007, 112: D13302.
[16] Blando J D, Turpin B J. Atmos. Environ., 2000, 34: 1623.
[17] Gelencser A, Varga Z. Atmos. Chem. Phys., 2005, 5: 2823.
[18] Ervens B, Feingold G, Frost G J, Kreidenweis S M. J. Geophys. Res., 2004, 109: D15205.
[19] Carlton A G, Turpin B J, Lim H J, Altieri K E, Seitzinger S. Geophys. Res. Lett., 2006, 33: L06822.
[20] Volkamer R, San Martini F, Molina L T, Salcedo D, Jimenez J L, Molina M J. Geophys. Res. Lett., 2007, 34: L19807.
[21] Guzman M I, Colussi A J, Hoffmann M R. Phys. Chem. A, 2006, 110: 3619.
[22] Perri M, Lim Y B, Seitzinger S P, Turpin B J. Atmos. Environ., 2010, 44: 2658.
[23] Loefer K W, Koehler C A, Paul N M, DeHann D O. Environ. Sci. Technol., 2006, 40: 6318.
[24] El Haddad I, Yao L, Nieto-Gligorovski L, Michaud V, Temime-Roussel B, Quivet E, Marchand N, Sellegri K, Monod A. Chem. Phys., 2009, 9: 5107.
[25] Forstner H J L, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 1997, 31: 1345.
[26] Limbeck A, Puxbaum H. Atmos. Environ., 1999, 33: 1847.
[27] Holes A, Eusebi A, Grosjean D, Allen D T. Aerosol. Sci. Technol., 1997, 26: 517.
[28] Spaulding R S, Schade G W, Goldstein A H, Charles M J. J. Geophys. Res., 2003, 108(D8): 4247.
[29] Volkamer R, Platt U, Wirtz K. J. Phys. Chem. A, 2001, 105: 7865.
[30] Volkamer R, Molina L T, Molina M J, Shirley T, Brune W H. Geophys. Res. Lett., 2005, 32: L08806.
[31] Warneck P. Atmos. Environ., 2003, 37: 2423.
[32] Hastings W P, Koehler C A, Bailey E L, De Haan D O. Environ. Sci. Technol., 2005, 39: 8728.
[33] Fu T M, Jacob D J, Wittrock F, Chance K, Wang Y X, Barletta B, Pilling M J. J. Geophys. Res., 2008, 113: D1503.
[34] Atkinson R, Arey J. Atmos. Environ., 2003, 37: 197.
[35] Ham J E, Proper S P, Wells J R. Atmos. Environ., 2006, 40: 726.
[36] Kawamura K, Yasui O. Atmos. Environ., 2005, 39: 1945.
[37] Doskey P V, Porter J A, Scheff P A. Journal of the Air & Waste Management Association, 1992, 42: 1437.
[38] Ip H S S, Huang X H H, Yu J Z. Geophys. Res. Lett., 2009, 36: L01802.
[39] Zhou X L, Mopper K. Environ. Sci. Technol., 1990, 24: 1864.
[40] Kroll J H, Ng N L, Murphy S M, Varutbangul V, Flagan R C, Seinfeld J H. J. Geophys. Res., 2005, 110: D23207.
[41] Loeffler K W, Koehler C A, Paul N M, De Hann D O. Environ. Sci. Technol., 2006, 40: 6318.
[42] Schweitzer F, Magi L, Mirabel P, George C. J. Phys. Chem., 1998, 102: 593.
[43] Avzianova E, Brooks S D. Spectrochimica Acta Part A, 2013, 101: 40.
[44] Whipple E B. J. Am. Chem. Soc., 1970, 92: 7183.
[45] SPARC Performs Automated Reasoning in Chemistry, (2003).[2013-06]. http://ibmlc2. chem. uga. edu/sparc/index. cfm.
[46] Munger J W, Jacob D J, Daube B C, Horowitz L W, Keene W C, Heikes B G. J. Geophys. Res., 1995, 100: 9325.
[47] Igawa M, Munger J W, Hoffmann M R. Environ. Sci. Technol., 1989, 23, 3: 556.
[48] Fratzke A R, Reilly P J. Int. J. Chem. Kinet., 1986, 18: 775.
[49] De Haan D O, Corrigan A L, Tolbert M A, Jimenez J L, Wood S E, Turley J J. Environ. Sci. Technol., 2009, 43: 8184.
[50] Yasmeen F, Sauret N, Gal J F, Maria P C, Massi L, Maenhaut W, Claeys M. Atmos. Chem. Phys., 2010, 10: 3803.
[51] Schwier A N, Sareen N, Mitroo D, Shapiro E L, McNeill V F. Environ. Sci. Technol., 2010, 44: 6174.
[52] Jang M, Czoschke N M, Lee S, Kamens R M. Science, 2002, 298(5594): 814.
[53] Nozière B, Voisin D, Longfellow C A, Friedli H, Henry B E, Hanson D R. J. Phys. Chem. A, 2006, 110: 2387.
[54] Liu Z, Wu L Y, Wang T H, Ge M F, Wang W G. J. Phys. Chem. A, 2011, 116: 437.
[55] Wang T H, Liu Z, Wang W G, Ge M F. Atmos. Environ., 2012, 56: 58.
[56] Wang L, Lal V, Khalizov A F, Zhang R. Environ. Sci. Technol., 2010, 44: 2461.
[57] Nozière B, Dziedzic P, Córdova A. J. Phys. Chem. A, 2009, 113: 231.
[58] Shapiro E L, Szprengiel J, Sareen N, Jen C N, Giordano M R, McNeill V F. Atmos. Chem. Phys., 2009, 9: 2289.
[59] Sareen N, Schwier A N, Shapiro E L, Mitroo D, McNeill V F. Atmos. Chem. Phys., 2010, 10: 997.
[60] Yu G, Bayer A R, Galloway M M, Korshavn K J, Fry C G, Keutsch F N. Environ. Sci. Technol., 2011, 45: 6336.
[61] De Haan D O, Tolbert M A, Jimenez J L. Geophys. Res. Lett., 2009, 36: L11819.
[62] De Haan D O, Corrigan A L, Smith K W, Stroik D R, Turley J J, Lee F E, Tolbert M A, Cordova K E, Ferrell G R. Environ. Sci. Technol., 2009, 43: 2818.
[63] De Haan D O, Hawkins L N, Kononenko J A, Turley J J, Corrigan A L, Tolbert M A, Jimenez J L. Environ. Sci. Technol., 2010, 45: 984.
[64] Galloway M M, Chhabra P S, Chan A W H, Surratt J D, Flagan R C, Seinfeld J H, Keutsch F N. Atmos. Chem. Phys., 2009, 9: 3331.
[65] Corrigan A L, Tolbert M A, Jimenez J L. Environ. Sci. Technol., 2011, 45: 984.
[66] Carlton A G, Turpin B J, Altieri K E, Seitzinger S, Reff A, Lim H J, Ervens B. Atmos. Environ., 2007, 41: 7588.
[67] Volkamer R, Ziemann P J, Molina M J. Atmos. Chem. Phys., 2009, 9: 1907.
[68] Altieri K E, Seitzinger S P, Carlton A G, Turpin B J, Klein G C, Marshall A G. Atmos. Environ., 2008, 42: 1476.
[69] Tan Y, Perri M J, Seitzinger S P, Turpin B J. Environ. Sci. Technol., 2009, 43: 8105.
[70] Tan Y, Carlton A G, Seitzinger S P, Turpin B J. Atmos. Environ., 2010, 44: 5218.
[71] Lee A K Y, Zhao R, Gao S S, Abbatt J P D. J. Phys. Chem. A, 2011, 115: 10517.
[72] Zhao R, Lee A K Y, Abbatt J P D. J. Phys. Chem. A, 2012, 116: 6253.
[73] Perri M J, Seitzinger S, Turpin B J. Atmos. Environ., 2009, 43: 1487.
[74] Nguyen T B, Coggon M M, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 2013, 47: 4307.
[75] Ervens B, Turpin B J, Weber R J. Atmos. Chem. Phys., 2011, 11: 11069.
[76] Volkamer R, San Martini F, Molina L T, Alcedo D, Jimenez J L, Molina M J. Geophys. Res. Lett., 2007, 34: L19807.

[1] 蒋革, 罗锋, 徐耀忠, 张晓辉. 近紫外光辅助4-硫脱氧胸苷抗癌作用的研究[J]. 化学进展, 2016, 28(8): 1224-1237.
[2] 叶兴南,陈建民. 大气二次细颗粒物形成机理的前沿研究*[J]. 化学进展, 2009, 21(0203): 288-296.
[3] 马磊,陈彬,吴骊珠,彭明丽,张丽萍,佟振合. 微反应器中的不对称光化学反应*[J]. 化学进展, 2004, 16(03): 386-.
阅读次数
全文


摘要

二次有机气溶胶的水相形成研究