English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 605-611 前一篇   

• 综述与评论 •

超级电容器炭电极材料的研究

徐斌*, 张浩, 曹高萍, 张文峰, 杨裕生   

  1. 防化研究院 北京 100191
  • 收稿日期:2010-10-01 修回日期:2010-12-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:xubinn@sohu.com E-mail:xubinn@sohu.com
  • 基金资助:

    国家自然科学基金项目(No.50802112,21073233,20633040)和国家高技术发展计划(863)项目(2006AA11A165)资助

Carbon Materials for Supercapacitors

Xu Bin*, Zhang Hao, Cao Gaoping, Zhang Wenfeng, Yang Yusheng   

  1. Research Institute of Chemical Defense, Beijing 100191, China
  • Received:2010-10-01 Revised:2010-12-01 Online:2011-03-24 Published:2011-01-26

炭电极材料是超级电容器的核心,该领域的研究近年来相当活跃,活性炭粉、活性炭纤维、碳凝胶、碳纳米管、玻态炭、模板炭、碳化物衍生炭、石墨烯等各种多孔炭材料用作超级电容器电极材料的研究都有报道。本文概述了我们近年来在超级电容器炭电极材料方面的研究工作,主要介绍了强碱化学活化制备活性炭电极材料、纳米CaCO3模板法制备介孔炭电极材料、碳纳米管阵列电极以及富含杂原子的多孔炭电极材料等,并对超级电容器用炭电极材料的发展趋势进行了评述。

Carbon materials play crucial roles in supercapacitors and the research in this field is very active in recent years. Various carbon materials such as activated carbons, activated carbon fibers, carbon aerogels, carbon nanotubes, glassy carbons, template carbons, carbide-derived carbons and grphene have been widely investigated as electrode materials for supercapacitors. In this paper, recent works of our group on research of carbon materials for supercapacitors are summarized, including activated carbon prepared by chemical activation, nano CaCO3 templated mesoporous carbon, carbon nanotube array electrode and carbon with heteroatoms. The further research directions are also discussed.

中图分类号: 

()

[1] Frackowiak E. Phys. Chem. Chem. Phys., 2007, 9: 1774-1785
[2] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38: 2520-2531
[3] Simon P, Gogotsi Y. Nature Mater., 2008, 7: 845-854
[4] Xu B, Wu F, Mu D B, Dai L L, Cao G P, Zhang H, Chen S, Yang Y S. Inter. J. Hydrogen Energy, 2010, 35: 632-637
[5] Balathanigaimani M S, Shim W G, Lee M J, Kim C, Lee J W, Moon H. Electrochem. Commun., 2008, 10: 868-871
[6] Xu B, Wu F, Chen R J, Cao G P, Chen S, Zhou Z M, Yang Y S. Electrochem. Commun., 2008, 10: 795-797
[7] Jagannathan S, Chae H G, Jain R, Kumar S. J. Power Sources, 2008, 185: 676-684
[8] Zeng X, Wu D, Fu R, Lai H. Electrochim. Acta, 2008, 53: 5711-5715
[9] Zhu Y, Hu H, Li W C, Zhang X. J. Power Sources, 2006, 16 2: 738-742
[10] Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S. Nature Mater., 2006, 5: 987-994
[11] Xu B, Wu F, Wang F, Chen S, Cao G P, Yang Y S. Chin. J. Chem., 2006, 24: 1505-1508
[12] Pan H, Poh C K, Feng Y P, Lin J. Chem. Mater., 2007, 19 (25): 6120-6125
[13] Zhang H, Cao G, Yang Y. Energy Environ. Sci., 2009, 2: 932-943
[14] Wen Y, Cao G, Yang Y. J. Power Sources, 2005, 148: 121-128
[15] Ania C O, Khomenko V, Raymundo-Piero E, Parra J B, Béguin F. Adv. Funct. Mater., 2007, 17: 1828-1836
[16] Li H, Luo J Y, Zhou X F, Yu C Z, Xia Y Y. J. Electrochem. Soc., 2007, 154: A731-A736
[17] Sevilla M, álvarez S, Centeno T A, Fuertes A B, Stoeckli F. Electrochim. Acta, 2007, 52: 3207-3215
[18] Li H Q, Liu R L, Zhao D Y, Xia Y Y. Carbon, 2007, 45: 2628-2635
[19] Wang D W, Li F, Liu M, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2008, 47: 373-376
[20] 徐斌(Xu B),曹高萍(Cao G P). 新型炭材料(New Carbon Mater.), 2008, 23(1): 95-96
[21] Fernández J A, Arulepp M, Leis J, Stoeckli F, Centeno T A. Electrochim. Acta, 2008, 53: 7111-7116
[22] Leis J, Arulepp M, Krik M, Perkson A. Carbon, 2010, 48: 4001-4008
[23] Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna P L. Science, 2006, 313: 1760-1763
[24] Largeot C, Portet C, Chmiola J, Taberna P L, Gogotsi Y, Simon P. J. Am. Chem. Soc., 2008, 130: 2730-2731
[25] Talapatra S, Kar S, Pal S K, Vajtai R, Ci L, Victor P, Shaijumon M M, Kaur S, Nalamasu O, P. Ajayan M. Nat. Nanotech., 2006, 1: 112-116
[26] Zhang H, Cao G P, Yang Y S. Nanotech., 2007, 18: art. no. 195607
[27] Zhang H, Cao G P, Yang Y S. J. Power Sources, 2007, 172: 476-480
[28] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[29] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. J. Phys. Chem. C, 2009, 113: 13103-13107
[30] Du X, Guo P, Song H, Chen X. Electrochim. Acta, 2010, 55: 4812-4819
[31] Huang J, Sumpter B G, Meunier V. Chem. Eur. J. 2008, 14: 6614-6626
[32] Mysyk R, Raymundo-Piero E, Béguin F. Electrochem. Commun., 2009, 11: 554-556
[33] Hulicova-Jurcakova D, Seredych M, Lu G Q, Bandosz1T J. Adv. Funct. Mater., 2009, 19: 438-447
[34] Centeno T A, Stoeckli F. J. Power Sources, 2006, 154: 314-320
[35] Wen Y H, Cheng J, Cao G P, Yang Y S. J. Appl. Electrochem., 2007, 37: 543-548
[36] Wang L, Morishita T, Toyoda M, Inagaki M. Electrochim. Acta, 2007, 53: 882-886
[37] 杨裕生(Yang Y S),曹高萍(Cao G P). 电池(Battery), 2006, 36(1):34-36
[38] Ishikawa M, Sakamoto A, Morita M, Matsuda Y, Ishida K. J. Power Sources, 1996, 60: 233-238
[39] Xu B, Wu F, Chen S, Zhang C Z, Cao G P, Yang Y S. Electrochim. Acta, 2007, 52: 4595-4598
[40] Kim Y J, Lee B J, Suezaki H, Chino T, Abe Y, Yanagiura T, Park K C, Endo M. Carbon, 2006, 44: 1581-1616
[41] Olivares-Marín M, Fernández J A, Lázaro M J, Fernández-González C, Macías-García A, Gómez-Serrano V, Stoeckli F, Centeno T A. Mater. Chem. Phys., 2009, 114: 323-327
[42] Wang H, Zhong Y, Li Q, Yang J, Dai Q. J. Phys. Chem. Solids, 2008, 69: 2420-2425
[43] Li Q Y, Wang H Q, D Q F, Yang J H, Zhong Y L. Solid State Ionics, 2008, 179: 269-273
[44] Tanahashi I. J. Appl. Electrochem., 2005, 35: 1067-1072
[45] Xu B, Chen Y F, Wei G, Zhang H, Cao G P, Yang Y S. Mater. Phys. Chem., 2010, 124: 504-509
[46] Xia K, Gao Q, Jiang J, Hu J. Carbon, 2008, 46: 1718-1726
[47] Xing W, Huang C C, Zhuo S P, Yuan X, Wang G Q, Hulicova-Jurcakova D, Yan Z F, Lu G Q. Carbon, 2009, 47: 1715-1722
[48] A. Burke. Electrochim. Acta, 2007, 53: 1083-1091
[49] Xu B, Wu F, Chen R J, Cao G P, Chen S, Yang Y S. J. Power Sources, 2010, 195: 2118-2124
[50] Xu B, Wu F, Chen S, Zhou Z M, Cao G P, Yang Y S. Electrochim. Acta, 2009, 54: 2185-2189
[51] Xu B, Hou S S, Chu M, Cao G P, Yang Y S. Carbon, 2010, 48: 2812-2814
[52] Xu B, Peng L, Wang G Q, Cao G P, Wu F. Carbon, 2010, 48: 2377-2380
[53] Xu B, Wu F, Chen R J, Cao G P, Chen S, Wang G Q, Yang Y S. J Power Sources, 2006, 158: 773-778
[54] Li C S, Wang D Z, Liang T X, Hu X, Liang J. Powder Tech., 2004, 142: 175-179
[55] Xu B, Wu F, Su Y F, Cao G P, Chen S, Zhou Z M, Yang Y S. Electrochim. Acta, 2008, 53: 7730-7735
[56] Zhang H, Cao G P, Yang Y S, Gu Z N. J. Electrochem. Soc., 2008, 155: K19-K22
[57] Zhang H, Cao G P, Yang Y S, Gu Z N. Carbon, 2008, 46: 30-34
[58] Zhang H, Cao G P, Wang Z Y, Yang Y S, Gu Z N. Carbon, 2008, 46: 822-824
[59] 张浩(Zhang H),曹高萍(Cao G P),杨裕生(Yang Y S),顾镇南(Gu Z N),徐斌(Xu B),张文峰(Zhang W F). 电化学(Electrochemistry), 2008, 14 (3): 117-120
[60] 张浩(Zhang H),曹高萍(Cao G P),杨裕生(Yang Y S),徐斌(Xu B),张文峰(Zhang W F). 化学进展(Progress in Chemistry), 2008, 20(3): 1495-1500
[61] Hsieh C T, Teng H. Carbon, 2002, 40: 667-674
[62] Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T. J. Power Sources, 2006, 158: 1510-1516
[63] Raymundo-Piero E, Leroux F, Béguin F. Adv. Mater., 2006, 18, 1877-1882
[64] Lota G, Lota K, Frackowiak E. Electrochem. Commun., 2007, 9: 1828-1832
[65] Kawaguchi M, Itoh A, Yagi S, Oda H. J. Power Sources, 2007, 172: 481-486
[66] Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu Z H, Lu G Q. Adv. Funct. Mater., 2009, 19: 1-10
[67] Hulicova-Jurcakova D, Puziy A M, Poddubnaya O I., Suárez-García F, Tascón J M D, Lu G Q. J. Am. Chem. Soc. 2009, 131: 5026-5027
[68] Wang D W, Li F, Chen Z G, Lu G Q, Cheng H M. Chem. Mater. 2008, 20: 7195-7200
[69] Xu B, Peng L, Wang G Q, Cao G P, Yang Y S. 60th Annual Meeting of the International of Electrochemistry, Beijing, 2009

[1] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[2] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[3] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[4] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[5] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.
[6] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[7] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[8] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[9] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[10] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.
[11] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
[12] 夏文, 李政, 徐银莉, 庄旭品, 贾士儒, 张健飞. 超级电容器用细菌纤维素基电极材料[J]. 化学进展, 2016, 28(11): 1682-1688.
[13] 李丹, 刘玉荣, 林保平, 孙莹, 杨洪, 张雪勤. 超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, 27(4): 404-415.
[14] 康怡然, 蔡锋, 陈宏源, 陈名海, 张锐, 李清文. 碳纳米管/石墨烯复合结构及其电化学电容行为[J]. 化学进展, 2014, 26(09): 1562-1569.
[15] 冯晓苗, 李瑞梅, 杨晓燕, 侯文华. 新型碳纳米材料在电化学中的应用[J]. 化学进展, 2012, 24(11): 2158-2166.
阅读次数
全文


摘要

超级电容器炭电极材料的研究