English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 284-290 前一篇   后一篇

• 综述与评论 •

超疏水模型及其机理*

柯清平;李广录;郝天歌;何涛**;李雪梅**   

  1. (南京工业大学材料化学工程国家重点实验室 南京 210009)
  • 收稿日期:2009-04-14 修回日期:2009-05-08 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 何涛;李雪梅 E-mail:taohe@njut.edu.cn;xuemeili@njut.edu.cn
  • 基金资助:

    高强度、高稳定超疏水涂层材料的制备

Superhydrophobicity: Theoretical Models and Mechanism

Ke Qingping;  Li Guanglu;  Hao Tiange;  He Tao**;  Li Xuemei**   

  1. (State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China)
  • Received:2009-04-14 Revised:2009-05-08 Online:2010-03-24 Published:2010-03-18
  • Contact: He Tao; Li Xuemei E-mail:taohe@njut.edu.cn;xuemeili@njut.edu.cn

超疏水表面是指具有非常高的水接触角,且水滴能轻易流动的表面。由于超疏水表面具有自清洁、防黏附、防雪粘等功能,在许多领域中用途广泛,有关超疏水表面制备和理论研究成为了研究的热点。特别是有关超疏水表面的理论,由于涉及表面结构的优化设计,更受到了广泛的关注。本文综述了近年来超疏水理论的新进展,重点归纳了一些具有代表性的理论,如经典的Wenzel理论和Cassie理论、过渡态的产生及如何避免过渡态的问题、接触线理论、多尺度效应等等,对各个理论的优缺点进行了系统地比较和评价,另外,对一些热点关注问题也进行了综述,并对超疏水理论的未来发展方向进行了展望。

High water contact angles and low contact angle hysteresis are two key characteristics of superhydrophobic surfaces. Because of the self-cleaning, anti-snow sticking properties, superhydrophobic surfaces have potential applications in many fields. Abundant works have been reported in the last decade both on their preparation and theories. The theories have drawn special attention because of its relevance to the optimization of designing superpydrophobic surfaces. In this review, we summary and compare the classic theories on superhydrophobic surfaces, both on their advantages and shortcomings. New developments in the theories are elaborated and evaluated with focus on the root cause of transition state and how to avoid, contact line density theory, multi-scale effects, etc. Finally, an outlook is given on the development of superhydrophobic theories.

Contents
1 Introduction
2 Theories on superhydrophobicity
2.1 Transition state
2.2 Contact line
2.3 Multi-scale effects
2.4 New issues
3 Conclusion and outlook

中图分类号: 

()

[ 1 ]  Li X M, Reinhoudt D N, Crego-Calam M. Chem. Soc. Rev. , 2007, 36: 1350—1368
[ 2 ]  Neinhuis C, Barthlott W. Ann. Botany, 1997, 79: 667—677
[ 3 ]  Zhao N, Lu X, Zhang X, et al. Prog. Chem. , 2007, 19: 860—871
[ 4 ]  Zhang X, Shi F, Niu J, et al. J. Mater. Chem. , 2008, 18: 621—633
[ 5 ]  Wenzel R N. Ind. Eng. Chem. , 1936, 28: 988—994
[ 6 ]  Cassie A B D, Baxter S. Trans. Faraday Soc. , 1944, 40: 546—551
[ 7 ]  Wenzel R N. J. Phys. Colloid Chem. , 1949, 53: 1466—1467
[ 8 ]  Zhang J, Wang J, Zhao Y, et al. Soft Matter, 2008, 4: 2232— 2237
[ 9 ]  Yoon Y I, Moon H S, Lyoo W S, et al. J. Colloid Interface Sci. , 2008, 320: 91—95
[ 10 ]  Xiu Y, HessD W, Wong C P. J. Colloid Interface Sci. , 2008, 326: 465—470
[ 11 ]  Taurino R, Fabbri E, Messori M, et al. J. Colloid Interface Sci. , 2008, 325: 149—156
[ 12 ]  Manca M, Cortese B, Viola I, et al. Langmuir, 2008, 24: 1833—1843
[ 13 ]  WuW, Chen M, Liang S, et al. J. Colloid Interface Sci. , 2008, 326: 478—482
[ 14 ]  Gao L C, McCarthy T J. Langmuir, 2007, 23: 13243—13243
[ 15 ]  Gao L C, McCarthy T J. Langmuir, 2007, 23: 3762—3765
[ 16 ]  McHale G. Langmuir, 2007, 23: 8200—8205
[ 17 ]  Chen W, Fadeev A Y, McCarthy T J, et al. Langmuir, 1999, 15: 3395—3399
[ 18 ]  Li X M, He T, Crego-Calam M, et al. Langmuir, 2008, 24: 8008—8012
[ 19 ]  Lafuma A, Quere D. Nat. Mater. , 2003, 2: 457—460
[ 20 ]  Bico J, Marzolin C, Quere D. Europhys. Lett. , 1999, 47: 220—226
[ 21 ]  Ran C B, Ding G Q, Liu W C, et al. Langmuir, 2008, 24: 9952—9955
[ 22 ]  PatankarN A. Langmuir, 2004, 20: 7097—7102
[ 23 ]  PatankarN A. Langmuir, 2003, 19: 1249—1253
[ 24 ]  Bormashenko E, Pogreb R, Whyman G, et al. App l. Phys. Lett. , 2007, 90: art. no. 201917
[ 25 ]  Ishino C, Okumura K, Quere D. Europhys. Lett. , 2004, 68: 419—425
[ 26 ]  Nosonovsky M, Bhushan B. Microsyst. Technol. , 2006, 12: 231—237
[ 27 ]  Barbieri L, Wagner E, Hoffmann P. Langmuir, 2007, 23: 1723—1734
[ 28 ]  Wenzel R N. Ind. Eng. Chem. , 1936, 28: 988—994
[ 29 ]  Bartell F E, Shepard J W. J. Phys. Chem. , 1953, 57: 211—215
[ 30 ]  Extrand C W. Langmuir, 2002, 18: 7991—7999
[ 31 ]  Extrand C W. Langmuir, 2004, 20: 5013—5018
[ 32 ]  Oner D, McCarthy T J. Langmuir, 2000, 16: 7777—7782
[ 33 ]  Yoshimitsu Z, Nakajima A, Watanabe T, et al. Langmuir, 2002, 18: 5818—5822
[ 34 ]  Nosonovsky M, Bhushan B. Nano Lett. , 2007, 7: 2633—2637
[ 35 ]  Sun T, Feng L, J iang L, et al. Acc. Chem. Res. , 2005, 38: 644—652
[ 36 ]  Herminghaus S. Europhys. Lett. , 2000, 52: 165—170
[ 37 ]  Nosonovsky M, Bhushan B. Langmuir, 2008, 24: 1525—1533
[ 38 ]  Feng L, Li S H, Li Y S, et al. Adv. Mater. , 2002, 14: 1857— 1860
[ 39 ]  Zhang X, Zhao N, Xu J, et al. Adv. Mater. , 2008, 20: 2938—2946
[ 40 ]  Zhu M, Zuo W, Yu H. J. Mater. Chem. , 2006, 41: 3793—3797
[ 41 ]  Feng L, Song Y L, Zhai J, et al. Angew. Chem. Int. Ed. , 2003, 42: 800—802
[ 42 ]  Cao L, Hu H H, Gao D. Langmuir, 2007, 23: 4310—4314
[ 43 ]  Tuteja A, Choi W, Ma M, et al. Science, 2007, 318: 1618—1622
[ 44 ]  MarmurA. Langmuir, 2008, 24: 7573—7579
[ 45 ]  GrunzeM. Science, 1999, 283: 41—42
[ 46 ]  Wouters D, SchubertU S. Angew. Chem. Int. Ed. , 2004, 43: 2480—2495
[ 47 ]  Zheng Y, Gao X, J iang L. Soft Matter, 2007, 3: 178—182
[ 48 ]  Chen Y, He B, Lee J H, et al. J. Colloid Interface Sci. , 2005, 281: 458—464
[ 49 ]  LiW, Fang G, Li Y, et al. J. Phys. Chem. B, 2008, 112: 7234—7243
[ 50 ]  Zhao Y, Lu Q, LiM, et al. Langmuir, 2007, 23: 6212—6217
[ 51 ]  Yang J, Rose F R A J, Gadegaard N, et al. Langmuir, 2009, 25: 2567—2571
[ 52 ]  Collet P, de Coninck J, Dunlop F, et al. Phys. Rev. Lett. , 1997, 79: 3704—3707

[1] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[2] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[3] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[4] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[5] 詹晓力, 金碧玉, 张庆华*, 陈丰秋. 多功能超润湿材料的设计制备与应用[J]. 化学进展, 2018, 30(1): 87-100.
[6] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[7] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[8] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[9] 吉琳*, 闫欣平. 介观生化反应的随机和混合模拟算法[J]. 化学进展, 2013, 25(06): 893-899.
[10] 刘娟, 杨青林*, 徐晶晶, 刘克松*, 郭林, 江雷. 仿壁虎和贻贝黏附材料[J]. 化学进展, 2012, (10): 1946-1954.
[11] 陈钰, 徐建生, 郭志光. 仿生超疏水性表面的最新应用研究[J]. 化学进展, 2012, 24(05): 696-708.
[12] 陈丕恒, 赖新春, 汪小琳. 钚及其化合物的理论研究[J]. 化学进展, 2011, 23(7): 1316-1321.
[13] 闫超, 李梅, 路庆华. 液体弹珠及其研究进展[J]. 化学进展, 2011, 23(4): 649-656.
[14] 张勇, 皮丕辉, 文秀芳, 郑大锋, 蔡智奇, 程江. 梯度接触角表面的构建与应用[J]. 化学进展, 2011, 23(12): 2457-2465.
[15] 杨浩 皮丕辉 文秀芳 郑大锋 程江 杨卓如. 氟化(甲基)丙烯酸酯聚合物结构与表面润湿性[J]. 化学进展, 2010, 22(06): 1133-1141.
阅读次数
全文


摘要

超疏水模型及其机理*