English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1033-1041 DOI: 10.7536/PC150102 前一篇   后一篇

• 综述与评论 •

超疏水膜的制备及其在膜蒸馏过程中的应用

田苗苗1,2, 李雪梅2, 殷勇2, 何涛*2, 刘金盾*1   

  1. 1. 郑州大学化工与能源学院 郑州 450001;
    2. 中国科学院上海高等研究院 上海 200120
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 何涛, 刘金盾 E-mail:het@sari.ac.cn;liujindun@zzu.edu.cn

Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation

Tian Miaomiao1,2, Li Xuemei2, Yin Yong2, He Tao*2, Liu Jindun*1   

  1. 1. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China;
    2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
超疏水材料具有超高的憎水性和自清洁特性,因而在解决材料的润湿和污染方面具有广泛的应用前景。膜蒸馏是一种以多孔疏水膜两侧蒸汽压差为推动力的膜分离过程,是脱盐和水回用中的重要技术。然而膜润湿和污染问题是导致膜蒸馏过程出水品质下降和应用过程稳定性差的关键。本文以膜蒸馏过程为背景,系统介绍了蒸馏过程的发展状况和超疏水膜材料的制备方法,以及超疏水膜在膜蒸馏中的应用,探讨了超疏水膜材料在膜蒸馏过程中的优势,同时指出了其不足和可能的解决方法,以期为膜蒸馏材料的发展提供研究方向和思路。
Superhydrophobic surfaces are characterized by their high water repellency and self-cleaning properties, which is potentially applicable in areas where anti-wetting and anti-fouling properties are highly desired. Membrane distillation (MD) is driven by the vapor pressure gradient across a porous hydrophobic membrane, and is versatile in desalination and water reclamation processes. However, membrane wetting and fouling are two major issues in the application of MD. Based on the state-of-art development of MD, this mini-review provides an overview on the preparation of superhydrophobic membranes and their application in MD. The merits of application of superhydrophobic membranes are illustrated, in addition to the shortcomings of superhydrophobic surfaces. This review is critical in pointing out new research directions and schemes for the development of the MD membrane.

Contents
1 Introduction
2 Membrane distillation (MD)
2.1 MD operation modes
2.2 Characteristics of MD process
2.3 MD membranes
3 Superhydrophobic membranes
3.1 Theoretical background of wettability
3.2 Preparation of superhydrophobic membranes
4 Application of superhydrophobic membranes in MD process
4.1 Advantages of using superhydrophobic membranes
4.2 Problems to be solved
5 Conclusion

中图分类号: 

()
[1] Lawson K W, Lloyd D R. J. Membr. Sci., 1997, 124: 1.
[2] Alkhudhiri A, Darwish N, Hilal N. Desalination, 2012, 287: 2.
[3] 吕晓龙(Lv X L). 第四届中国膜科学与技术报告会论文集(The Proceeding of 4th China Membrane Science and Technology), 2010, 30: 403.
[4] 吴庸烈(Wu Y L). 膜科学与技术(Membrane Science and Technology), 2003, 23: 67.
[5] 王许云(Wang X Y), 张林(Zhang L), 陈欢林(Chen H L). 化工进展(Chemical Industry and Engineering Progress), 2007, 26: 168.
[6] 吕晓龙(Lv X L). 膜科学与技术(Membrane Science and Technology), 2011, 31: 96.
[7] 赵晶(Zhao J), 武春瑞(Wu C R), 吕晓龙(Lv X L). 膜科学与技术(Membrane Science and Technology), 2009, 29: 83.
[8] 申龙(Shen L), 高瑞昶(Gao R C). 化工进展(Chemical Industry and Engineering Progress), 2013, 33: 289.
[9] 环国兰(Huan G L), 杜启云(Du Q Y), 王薇(Wang W). 天津工业大学学报(Journal of Tianjin Polytechnic University), 2009, 28: 12.
[10] Li X M, Reinhoudt D, Crego-Calama M. Chem. Soc. Rev., 2007, 36: 1350.
[11] Ma M L, Hill R M. Curr. Opin. Colloid In., 2006, 11: 193.
[12] Nosonovsky M, Bhushan B. Curr. Opin. Colloid In., 2009, 14: 270.
[13] Guo Z G, Liu W M, Su B L. J. Colloid Interf. Sci., 2011, 353: 335.
[14] Yamashita H, Nakao H, Takeuchi M, Nakatani Y, Anpo M. Nucl. Instrum Meth. B, 2003, 206: 898.
[15] 孙旭东(Sun X D), 李广芬(Li G F), 张玉忠(Zhang Y Z). 化工新型材料(New Chemical Materials), 2009, 37: 5.
[16] Yang C, Li X M, Gilron J, Kong D F, Yin Y, Oren Y, Linder C, He T. J. Membr. Sci., 2014, 456: 155.
[17] Liao Y, Wang R, Fane A G. J. Membr. Sci., 2013, 440: 77.
[18] Zhang J, Song Z Y, Li B A, Wang Q, Wang S C. Desalination, 2013, 324: 1.
[19] Razmjou A, Arifin E, Dong G X, Mansouri J, Chen V. J. Membr. Sci., 2012, 415/416: 850.
[20] Gunko S, Verbych S, Bryk M, Hilal N. Desalination, 2006, 190: 117.
[21] Godino M P, Peiia L, Rincbn C, Mengual J I. Desalination, 1996, 108: 91.
[22] Calabrb V, Jiao B L, Drioli E. Ind. Eng. Chem. Res., 1994, 33: 1803.
[23] Tomaszewska M, Gryta M, Morawski A W. J. Membr. Sci., 1995, 102: 113.
[24] Bandini S, Gostoli C, Sarti G C. J. Membr. Sci., 1992, 73: 217.
[25] Bandini S, Sarti G C. AIChE J., 1999, 45: 1422.
[26] Soni V, Abildskov J, Jonsson G, Gani R. J. Membr. Sci., 2008, 320: 442.
[27] Banat F A, Simandl J. Sep. Sci. Technol., 1998, 33: 201.
[28] Garcia-Payo M C, Izquierdo-Gil M A, Fernández-Pineda C. J. Membr. Sci., 2000, 169: 61.
[29] Banat F A, Simandl J. J. Membr. Sci., 1999, 163: 333.
[30] Khayet M. Adv. Colloid Interface Sci., 2011, 164: 56.
[31] Garc?a-Payo M C, Rivier C A, Marison I W, Stockar U V. J. Membr. Sci., 2002, 198: 197.
[32] El-Bourawi M S, Ding Z, Ma R, Khayet M. J. Membr.Sci., 2006, 285: 4.
[33] Kim Y D, Thu K, Ghaffour N, Choon N K. J. Membr. Sci., 2013, 427: 345.
[34] Gálvez J B, Rodríguez L G, Mateos I M. Desalination, 2009, 246: 567.
[35] Gryta M, Karakulski K, Morawski A W. Water Res., 2001, 35: 3665.
[36] Criscuoli A, Drioli E. Desalination, 1999, 124: 243.
[37] Li X M, Zhao B, Wang Z, Xie M, Song J, Nghiem L D, He T, Yang C, Li C, Chen G. Water Sci. Technol., 2014, 69: 1036.
[38] Alkhudhiri A, Darwish N, Hilal N. Desalination, 2012, 287: 55.
[39] Laganà F, Barbieri G, Drioli E. J. Membr. Sci., 2000, 166: 1.
[40] Zolotarev P P, Ugrozov V V, Volkina I B, Nikulin V M. J. Hazard. Mater., 1994, 37: 77.
[41] El-Abbassi A, Kiai H, Hafidi A, García-Payo M C, Khayet M. Sep. Sci. Technol., 2012, 98: 55.
[42] Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G. Sep. Sci. Technol., 2001, 22/23: 617.
[43] 段辉(Duan H), 熊征蓉(Xiong Z R), 汪厚植(Wang H Z), 赵惠中(Zhao H Z), 高殿强(Gao D Q). 化学工业与工程(Chemical Industry and Engineering), 2006, 23: 81.
[44] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Adv. Mater., 2002, 14: 1857.
[45] Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Beilstein J. Nanotechnology, 2011, 2: 152.
[46] Wenzel R N. J. Phys. Chem., 1949, 53: 1466.
[47] Cassie A. Discussions of the Faraday Society, 1948, 3: 11.
[48] Mohamed A M A, Abdullah A M, Younan N A. Arab. J. Chem., 2014, doi:10.1016/j.arabjc.2014.03.006.
[49] Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. Langmuir, 1999, 15: 4321.
[50] Yang T S, Tian H, Chen Y Q. J. Sol-Gel Sci. Technol., 2008, 49: 243.
[51] Latthe S S, Imai H, Ganesan V, Rao A V. Appl. Surf. Sci., 2009, 256: 217.
[52] Ogawa T, Ding B, Sone Y, Shiratori S. Nanotechnology, 2007, 18: 1.
[53] Badre C, Dubot P, Lincot D, Pauporte T, Turmine M. J. Colloid Interf. Sci., 2007, 316: 233.
[54] Cardoso M R, Tribuzi V, Balogh D T, Misoguti L, Mendona C R. Appl. Surf. Sci., 2011, 257: 3281.
[55] Twardowski A, Makowski P, Malachowski A, Hrynyk R, Pietrowski P, Tyczkowski J. Mater. Sci-Medzg., 2012, 18: 163.
[56] Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang L, Li X. J. Am. Chem. Soc., 2004, 126: 3064.
[57] Zheng Z R, Gu Z Y, Huo R T, Ye Y H. Appl. Surf. Sci., 2009, 255: 7263.
[58] Zheng Z R, Gu Z Y, Huo R T, Luo Z S. Appl. Surf. Sci., 2010, 256: 2061.
[59] Wang S, Li Y, Fei X, Sun M, Zhang C, Li Y, Yang Q, Hong X. J. Colloid Interf. Sci., 2011, 359: 380.
[60] Chen Y B, Kim H. Appl. Surf. Sci., 2009, 255: 7073.
[61] Feng L, Li S H, Li H J, Zhai J, Song Y L, Jiang L, Zhu D B. Angew. Chem., 2002, 114: 1269.
[62] Liu J F, Xiao X Y, Shi Y L, Wan C X. Appl. Surf. Sci., 2014, 297: 33.
[63] Hejazi I, Hajalizadeh B, Seyfi J, Sadeghi G M M, Jafari S H, Khonakdar H A. Appl. Surf. Sci., 2014, 293: 116.
[64] Franco J A, Kentish S E, Perera J M, Stevens G W. J. Membr. Sci., 2008, 318: 107.
[65] Dong Z Q, Ma X H, Xu Z L, You W T, Li F B. Desalination, 2014, 347: 175.
[66] Li X, Wang C, Yang Y, Wang X, Zhu M, Hsiao B S. ACS Appl. Mater. Inter., 2014, 6: 2423.
[67] Wei X, Zhao B L, Li X M, Wang Z W, He B Q, He T, Jiang B. J. Membr. Sci., 2012, 407/408: 164.
[68] Hurst S M, Farshchian B, Choi J, Kim J, Park S. Colloid Surface A, 2012, 407: 85.
[69] Ma Z, Hong Y, Ma L, Su M. Langmuir, 2009, 25: 5446.
[70] Gryta M, Barancewicz M. J. Membr. Sci., 2010, 358: 158.
[71] Gryta M, Tomaszewska M, Morawski A. Sep. Purif. Technol., 1997, 11: 93.
[72] Gryta M. J. Membr. Sci., 2005, 265: 153.
[73] M. Khayet, T. Matsuura, J.I. Mengual, Qtaishat M. Desalination, 2006, 192: 105.
[74] Yang C, Tian M, Xie Y, Li X M, Zhao B, He T, Liu J. J. Membr. Sci., 2015, 482: 25.
[75] Meng S, Ye Y, Mansouri J, Chen V. J. Membr. Sci., 2014, 463: 102.
[76] Gryta M. Desalination, 2008, 228: 128.
[77] Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. J. Membr. Sci., 2015, 475: 215.
[78] Srisurichan S, Jiraratananon R, Fane A G. Desalination, 2005, 174: 63.
[79] Zhang H, Lamb R, Lewis J. Sci. Technol. Adv. Mat., 2005, 6: 236.
[80] Privett B J, Youn J, Hong S A, Lee J, Han J, Shin J H, Schoenfisch M H. Langmuir, 2011, 27: 9597.
[81] Martinez-Diez L, Vazquez-Gonzalez M. Ind. Eng. Chem. Res., 1998, 37: 4128.
[82] Khayet M, Godino M, Mengual J. Sep. Sci. Technol., 2005, 39: 125.
[83] Meng S, Ye Y, Mansouri J, Chen V. J. Membr. Sci., 2015, 473: 165.
[84] Lin J, Zheng C, Ye W J, Wang H Q, Feng D Y, Li Q Y, Huan B W. J. Appl. Polym. Sci., 2015, 132: 1.
[85] Zhu L, Shi P, Xue J, Wang Y Y, Chen Q M, Ding J F, Wang Q J. ACS Appl. Mater. Inter., 2014, 6: 8073.
[86] Ball P. Nature, 1999, 400: 507.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[3] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[4] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[5] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[6] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[7] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[8] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[9] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[10] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[11] 唐媛媛, 徐佳, 陈幸, 高从堦. 正渗透脱盐过程的核心——正渗透膜[J]. 化学进展, 2015, 27(7): 818-830.
[12] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[13] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[14] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[15] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.